Skip to main content
Log in

Exploration of single wall carbon nanotubes for the peristaltic motion in a curved channel with variable viscosity

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the present paper, we have investigated peristaltic flow of single wall carbon nanotubes (SWCNTs) in a curved channel with variable viscosity. The present problem is modeled and exact solutions for non-dimensional differential equation are achieved under long wavelength and low Reynolds number approximation. The features of the peristaltic motion are examined by plotting graphs and discussed in detail. Velocity tables are also incorporated for different values of volume fraction of the nano particle material and for viscosity parameter. Results showed that addition of SWCNTs decreases nano particle temperature and velocity profile near the left wall. It is found that for pure blood case, velocity for the variable viscosity fluid is greater as compared to the constant viscosity fluid. It is also found that for the case of SWCNTs, velocity for the variable viscosity fluid near the left wall decreases whereas it gets opposite behavior near the right wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Latham TW (1966) Fluid motion in a peristaltic pump. MS thesis. Massachusetts Institute of Technology, Cambridge

  2. Shapiro AH, Jafferin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 35:669

    Google Scholar 

  3. Mekheimer KhS, Elmaboud YA (2008) The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Phys Lett A 372:1657

    Article  MATH  Google Scholar 

  4. Yildirim A, Sezer SA (2010) Effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel. Math Comput Model 52:618

    Article  MathSciNet  MATH  Google Scholar 

  5. Nadeem S, Maraj EN, Akbar NS Investigation of peristaltic flow of Williamson nanofluid in a curved channel with compliant walls. Appl Nanosci. doi:10.1007/s13204-013-0234-9

  6. Elmaboud YA (2012) Influence of induced magnetic field on peristaltic flow in an annulus. Commun Nonlinear Sci Numer Simulat 17:685

    Article  MathSciNet  Google Scholar 

  7. Nadeem S, Sadaf H, Akbar NS (2014) Analysis of peristaltic flow for a Prandtl fluid model in an endoscope. J Power Tech 94:1

    Google Scholar 

  8. Khan AA, Ellahi R, Vafai K Peristaltic transport of a Jeffery fluid with variable viscosity through a porous medium in anasymmetric channel. Adv Math Phys. doi:10.1155/2012/169642

  9. Ebaid A (2008) A new numerical solution for the MHD peristaltic flow of a bio-fluid with variable viscosity in a circular cylindrical tube via adomian decomposition method. Phys Lett A 372:5321

    Article  MathSciNet  MATH  Google Scholar 

  10. Nadeem S, Akbar NS (2010) Influence of temperature dependent viscosity on peristaltic transport of a Newtonian fluid: application of an endoscope. Appl Math Comput 216:3606

    MathSciNet  MATH  Google Scholar 

  11. Hakeem AE, Naby AE, Misiery ME, Shamy E Hydromagnetic flow of fluid with variable viscosity in a uniform tube with peristalsis. J Phys A Math Gen 36:8535. doi:10.1088/0305-4470/36/31/314

  12. Nadeem S, Sadaf H, Sadiq AM (2014) Analysis of nanoparticles on peristaltic flow of Prandtl fluid model in an endoscopy. Curr Nanosci 10:709

    Article  Google Scholar 

  13. Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe. Analytical solutions. Appl Math Model 37:1451

    Article  MathSciNet  Google Scholar 

  14. Sheikholeslami M, Gorji BM, Ellahi R, Hassan M, Soleimani S (2014) Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM. J Magn Magn Mater 349:188

    Article  Google Scholar 

  15. Nadeem S, Maraj EN (2015) Peristaltic flow of Sutterby nano fluid in a curved channel with compliant walls. J Comput Theor Nanosci 12(2). doi:10.1166/jctn.2015.3722

  16. Ellahi R, Razab M, Vafaia K (2012) Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math Comput Model 55:1876

    Article  MATH  Google Scholar 

  17. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787

    Article  Google Scholar 

  18. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674

    Article  Google Scholar 

  19. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 20:1765

    Article  Google Scholar 

  20. Guo Z, Sadler PJ, Tsang SC (1998) Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv Mater 10:701

    Article  Google Scholar 

  21. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767

    Article  Google Scholar 

  22. Ellahi R, Hassan M, Zeeshan A, Khan AA, Gulzarb M (2015) Analysis of single and multi walled carbon nanotubes suspended in salt water solutions over a stretching cylinder. Mitt Klost 65:1

    Google Scholar 

  23. Akbar NS (2014) Peristaltic flow with Maxwell carbon nanotubes suspensions. J Comput Theor Nanosci 11:1642

    Article  Google Scholar 

  24. Ul Haq R, Khan ZH, Khan WA (2015) Thermo physical effects of carbon nanotubes on MHD flow over a stretching surface. Physica E 63:215

    Article  Google Scholar 

  25. Sinha N, Yeow J (2005) Carbon nano tube. IEEE Trans Nanosci 4:180

    Article  Google Scholar 

  26. Akbar NS (2014) MHD peristaltic flow with carbon nanotubes in an asymmetric channel. J Comput Theor Nanosci 11:1323

    Article  Google Scholar 

  27. Khan WA, Khan ZH, Rahi M Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl Nanosci. doi:10.1007/s13204-013-0242-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Sadaf.

Additional information

Technical Editor: Marcio S Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, S., Sadaf, H. Exploration of single wall carbon nanotubes for the peristaltic motion in a curved channel with variable viscosity. J Braz. Soc. Mech. Sci. Eng. 39, 117–125 (2017). https://doi.org/10.1007/s40430-016-0612-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0612-9

Keywords

Navigation