Skip to main content
Log in

Numerical simulation of plunging wave breaker impact by a modified Turbulent WCSPH method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the mesh-less weakly compressible smoothed particle hydrodynamics (WCSPH) method was used to solve the continuity and momentum equations with laminar viscosity and SPS turbulent model. To correct the pressure field and improve the accuracy of the free surface profile, modification of kernel and gradient of kernel was implemented to WCSPH model. The modified method, namely mSPH-T-K, was also equipped with periodic smoothing of the density using the modified kernel. To validate the modified model, the pressure field and wave front position of the 2D dam break flow were compared with those of experimental data, standard SPH method and mSPH-T method, which is the turbulence SPH method without modification of kernel and its gradients. Furthermore, the dam break on a wet bed was performed by the model. The results showed the well agreement of the modified model results of free surface with this benchmark. Finally, transformation of plunging breaker wave on a ramp was modeled with both mSPH-T and modified model. The results showed that the modified model has a good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ketabdari MJ, Nobari MRH, Larmaei MM (2008) Simulation of waves group propagation and breaking in coastal zone using a Navier–Stokes solver with an improved VOF free surface treatment. Appl Ocean Res 30(2):130–143

    Article  Google Scholar 

  2. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Article  MATH  Google Scholar 

  3. Lo EYM, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24

  4. Khayyer A, Gotoh H, Shao SD (2008) Corrected incompressible SPH method for accurate water surface tracking in breaking waves. Coast Eng 55(3):236–250

    Article  Google Scholar 

  5. Mirmohammadi A, Ketabdari MJ (2011) Numerical simulation of wave scouring beneath marine pipeline using smoothed particle hydrodynamics. Int J Sediment Transp 26(2011):331–342

    Article  Google Scholar 

  6. Crespo AJC, Gomez-Gesteira M, Dalrymple RA (2008) Modeling dam break behavior over a wet bed by a SPH technique. J Waterw Port Coast Ocean Eng 134(6):313–320. doi:10.1061/(ASCE)0733-950X(2008)-134:6(313

    Article  Google Scholar 

  7. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–155

    Article  Google Scholar 

  8. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475

    Article  MATH  Google Scholar 

  9. Shao S, Gotoh H (2005) Turbulence particle models for tracking free surfaces. J hydraul res 43(3):276–289

    Article  Google Scholar 

  10. Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluids 53(2):277–304

    Article  MATH  MathSciNet  Google Scholar 

  11. Gotoh H, Shibihara T, Hayashi M (2001) Sub-particle-scale model for the MPS method—Lagrangian flow model for hydraulic engineering. Comput Fluid Dyn J 9(4):247–339

    Google Scholar 

  12. Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53(2–3):141–147

    Article  Google Scholar 

  13. Belytschko T, Krongauz Y, Dolbow J, Gerlach C (1998) On the completness of meshfree particle methods. Int J Numer Methods Eng 43(5):785–819

    Article  MATH  MathSciNet  Google Scholar 

  14. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annual Rev Astron Appl 30:543–574

    Article  Google Scholar 

  15. Monaghan JJ, Lattanzio JC (1985) A refined method for astrophysical problems. Astron Astrophys 149:135–143

    MATH  Google Scholar 

  16. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific

  17. Batchelor GK (1967) Introduction to fluid dynamics. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  18. Yoshizawa A (1986) Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys Fluids 29:2152–2164

    Article  MATH  Google Scholar 

  19. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  20. Blin L, Hadjadj A, Vervisch L (2003) Large eddy simulation of turbulent flows in reversing systems. J Turbul 4:1

    Article  Google Scholar 

  21. Bonet J, Lok T-SL (1999) Variational and momentum preservation aspects of smoothed particle hydrodynamic formulations. Comput Methods Appl Mech 180:97–115

    Article  MATH  MathSciNet  Google Scholar 

  22. Dilts GA (1999) Moving-least–squares-particle hydrodynamics—I. Consistency and stability. Int J Numer Methods Eng 44:1115–1155

    Article  MATH  MathSciNet  Google Scholar 

  23. Bonet J, Kulasegaram S (2000) Correction and stabilization of smoothed particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47(6):1189–1214

    Article  MATH  Google Scholar 

  24. Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82(1):1–15

    Article  MATH  Google Scholar 

  25. Kiara A (2010) Analysis of the smoothed particle hydrodynamics method for free surface flows

  26. Dalrymple RA, Knio O (2001) SPH modeling of water waves. ASCE

  27. Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods. CMC-TECH SCI PRESS 5(3):173

    MATH  Google Scholar 

  28. Martin JC, Moyce WJ (1952) Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos Trans Royal Soc London Series A, Math Phys Sci 244(882):312

    Article  MathSciNet  Google Scholar 

  29. Hu CH, Kashiwagi M (2004) A CIP method for numerical simulations of violent free surface flows. J Mar Sci Tech 9(4):143–157

    Article  Google Scholar 

  30. Kleefsman KMT, Fekken G, Veldman AEP, Iwanowski B, Buchner B (2005) A volume of fluid based simulation method for wave impact problems. J Comput Phys 206:363–393

    Article  MATH  MathSciNet  Google Scholar 

  31. Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. World Sci Pub Co Inc

  32. Goda Y, Fukumori T (1972) Laboratory investigation of wave pressures exerted upon vertical and composite walls. Rep Port Harbor Res Inst 11:3–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ketabdari.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami Varnousfaaderani, M., Ketabdari, M.J. Numerical simulation of plunging wave breaker impact by a modified Turbulent WCSPH method. J Braz. Soc. Mech. Sci. Eng. 37, 507–523 (2015). https://doi.org/10.1007/s40430-014-0201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0201-8

Keywords

Navigation