Skip to main content
Log in

Integrated core study of a fractured metamorphic HC-reservoir; Kiskunhalas-NE, Pannonian Basin

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The petrologic interpretation of the coexisting lithologies in the KIHA-NE metamorphic block suggests that two of the four rock units may have a significant role in the migration and/or storage of hydrocarbons. The strongly sheared mylonite samples exhibit remarkable fracture systems with clear evidence of one-time oil migration. In the course of the integrated core study, in addition to the petrological methods, 3D CT scans and destructive and non-destructive rock mechanical treatments were fulfilled on representative samples and evaluated. On the basis of the results we can state that the petrologically different rock types have remarkably different brittle behaviours. The orthognesis mylonite is characterised by moderate anisotropy and fracture tendency. However, the fractal dimension and cumulative fracture length values do not suggest the formation of complicated and connected fracture systems. High anisotropy and a large and possibly communicating fracture system characterise the graphitic gneiss mylonite, achieved by a much lower work investment than for any other rock type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antonellini M, Aydin A, Pollard DD, D’Onfro P (1994) Petrophysical study of faults in sandstone using petrographic image analysis and X-ray computerized tomography. Pure Appl Geophys 143:181–201

    Article  Google Scholar 

  • Aoya M, Kouketsu Y, Endo S, Shimizu H, Mizukami T, Nakamura D, Wallis S (2010) Extending the applicability of the Raman carbonaceous-material geothermometer using data from contact metamorphic rocks. J Metamorph Geol 28(9):895–914

    Article  Google Scholar 

  • Árkai P (1978) A Kiskunhalas ÉK-I terület mezozoikumnál idősebb metamorf és magmas képződményeinek szénhidrogénprognózist elősegítő ásványtan-kőzettani és geokémiai vizságlata. MTA GKI (Manuscript)

  • Árkai P (1991) Kishőmérsékletű regionális metamorfózis. DSc Thesis, Budapest

  • ASTM (2004) Annual book of ASTM standards, 4/08, soil and rock. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Barton NR, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech Rock Eng 4:189–236

    Article  Google Scholar 

  • Barton CC, Larsen E (1985) Fractal geometry of two-dimensional fracture networks at Yucca Mountain, Southwestern Nevada. In: Stephanson O (ed) Proc int symp on fundamentals of rock joints, pp 77–84

    Google Scholar 

  • Barton CC (1995) Fractal analysis of scaling and spatial clustering of fractures. In: Barton CC, La Pointe PR (eds) Fractals in the earth sciences. Plenum Press, New York, p 168

    Chapter  Google Scholar 

  • Be’suelle P, Baud P, Wong T-F (2003) Failure mode and spatial distribution of damage in Rothbach Sandstone in the brittle-ductile transition. Pure Appl Geophys 160:851–868

    Article  Google Scholar 

  • Batzle ML, Simmons G, Siegfried RW (1980) Microcrack closure in rocks under stress: direct observation. J Geophys Res 85(B12):7072–7090

    Article  Google Scholar 

  • Beyssac O, Goffé B, Chopin C, Rouzaud N (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

    Article  Google Scholar 

  • Bieniawski ZT (1967) Mechanism of brittle fracture of rock, parts I, II and III. Int J Rock Mech Min Sci Geomech Abstr 4(4):395–430

    Article  Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley-Interscience, New York, pp 40–47

    Google Scholar 

  • Bryon DN, Atherton MP, Hunter RH (1995) The interpretation of granitic textures from serial thin sectioning, image analysis and three-dimensional reconstruction. Mineral Mag 59:203–211

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Maejima T, Morioka H, Minami M (2004) Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci 41(5):833–847

    Article  Google Scholar 

  • Cai M (2010) Practical estimates of tensile strength and Hoek–Brown strength parameter m i of brittle Rocks. Rock Mech Rock Eng 43(2):167–184

    Article  Google Scholar 

  • Carlson WD, Denison C, Ketcham RA (2000) High-resolution X-ray computed tomography as a tool for visualization and quantitative analysis of igneous textures in three dimensions. Vis Geosci 4(3):1–14

    Article  Google Scholar 

  • Cooper MR, Hunter RH (1995) Precision serial lapping, imaging and three-dimensional reconstruction of minus-cement and post-cementation intergranular pore-systems in the Penrith Sandstone of north-western England. Mineral Mag 59:213–220

    Article  Google Scholar 

  • Cserepes L (1980) A Duna-Tisza Közi karbonnál idősebb képződmények petrológiai vizsgálata MSZKFI, Budapest

  • Cserepes-Meszéna B (1986) Petrography of the crystalline basement of the Danube-Tisza Interfluve (Hungary). Acta Geol Hung 29(3–4):321–339

    Google Scholar 

  • Csontos L, Nagymarosy A, Horváth F, Kovac M (1992) Tertiary evolution of the Intra-Carpathian area: a model. Tectonophysics 208:221–241

    Article  Google Scholar 

  • Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics 297(1–4):51–71

    Article  Google Scholar 

  • Deere DU, Miller RP (1966) Engineering classification and index properties of intact rock. Tech report No AFWL-TR-65-116, Air force

  • Denison C, Carlson WD, Ketcham RA (1997) Three-dimensional quantitative textural analysis of metamorphic rocks using high-resolution computed X-ray tomography: part I. Methods and techniques. J Metamorph Geol 15(1):29–44

    Article  Google Scholar 

  • Denison C, Carlson WD (1997) Three-dimensional quantitative textural analysis of metamorphic rocks using high-resolution computed X-ray tomography: part II. Application to natural samples. J Metamorph Geol 15(1):45–57

    Article  Google Scholar 

  • D. Lőrincz K (1996) Feszültségtér történet meghatározása szeizmikus szelvényeken azonosított többfázisú tektonizmus alapján, a Szolnoki flis öv nyugati peremén. Magy Geofiz 37(4):228–246

    Google Scholar 

  • Földes T, Árgyelán GB, Kiss B, Hips K, Bogner P, Repa I (2004) Application of medical computer tomograph measurement to 3D reservoir characterization. Acta Geol Hung 47(1):63–73

    Article  Google Scholar 

  • Gercek H (2007) Poisson’s ratio values of rocks. Int J Rock Mech Min Sci 44:1–13

    Article  Google Scholar 

  • Gottschalk RR (1990) Mechanical anisotropy of gneiss: failure criterion and textural sources of directional behavior. J Geophys Res 95(B13):21,613–21,634

    Article  Google Scholar 

  • Haas J, Péró Cs (2004) Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sci 93(2):297–313

    Article  Google Scholar 

  • Hirata T (1989) Fractal dimension of fault system in Japan: fracture structure in rock fracture geometry at various scales. Pure Appl Geophys 131:157–170

    Article  Google Scholar 

  • Horváth F (1995) Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar Petroleum Geol 12(8):837–844

    Article  Google Scholar 

  • Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2006) Formation and deformation of the Pannonian Basin: constraints from observational data. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Memoirs, vol 32. Geological Society, London, pp 191–206

    Google Scholar 

  • Huddlestone-Holmes CR, Ketcham RA (2010) An X-ray computed tomography study of inclusion trail orientations in multiple porphyroblasts from a single sample. Tectonophysics 480:305–320

    Article  Google Scholar 

  • Hounsfield GN (1973) Computerized traverse axial scanning (tomography). Br J Radiol 46:1016–1022

    Article  Google Scholar 

  • Ikeda S, Nakano T, Nakashima Y (2000) Three-dimensional study on the interconnection and shape of crystals in a graphic granite by X-ray CT and image analysis. Mineral Mag 64(5):945–959

    Article  Google Scholar 

  • ISRM (2006) The complete ISRM suggested methods for rock characterization, testing monitoring, ISRM, Lisboa, p 628 (Eds: Ulusay R, Hudson JA)

    Google Scholar 

  • Jaeger JC, Cook NGW, Zimmermann RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell, Oxford, p 475

    Google Scholar 

  • Kawakata H, Cho A, Kiyama T, Yanagidani T, Kusunose K, Shimada M (1999) Three-dimensional observations of faulting process in Westerly Granite under uniaxial and triaxial conditions by X-ray CT scan. Tectonophysics 313:293–305

    Article  Google Scholar 

  • Ketcham RA, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comput Geosci 27:381–400

    Article  Google Scholar 

  • Ketcham RA (2005) Three-dimensional grain fabric measurements using high-resolution X-ray computed tomography. J Struct Geol 27:1217–1228

    Article  Google Scholar 

  • Kruhl JH, Nega M (1996) The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geol Rundsch 85:38–43

    Article  Google Scholar 

  • Lelkes-Felvári Gy, Frank W, Schuster R (2003) Geochronological constraints of the Variscan, Permian–Triassic and eo-Alpine (Cretaceous) evolution of the Great Hungarian Plain basement. Geol Carpath 54(5):299–315

    Google Scholar 

  • Lelkes-Felvári Gy, Frank W (2006) Geochronology of the metamorphic basement, Transdanubian part of the Tisza Mega-Unit. Acta Geol Hung 49(3):189–206

    Article  Google Scholar 

  • Li J, Du Q, Sun C (2009) An improved box-counting method for image fractal dimension estimation. Pattern Recognit 42(11):2460–2469

    Article  Google Scholar 

  • Liu Q, Brosch FJ, Riedmüller G (2004) The significance and prediction of different rock mass characteristics for rock engineering. Int J Rock Mech Min Sci 41(1):103–117

    Article  Google Scholar 

  • Matsumoto N, Yomogida K, Honda S (1992) Fractal analysis of fault systems in Japan and the Philippines. Geophys Res Lett 19(4):357–360

    Article  Google Scholar 

  • Marschallinger R (1998) Correction of geometric errors associated with the 3-D reconstruction of geological materials by precision serial lapping. Mineral Mag 62:783–792

    Article  Google Scholar 

  • Martin CD (1993) The strength of massive Lac du Bonnet granite around underground opening. PhD Thesis, p 278

  • Mees F, Swennen R, Van Geet M, Jacobs P (2003) Applications of X-ray computed tomography in the geosciences. Geol Soc, Lond, Spec Publ 215:1–6

    Article  Google Scholar 

  • M. Tóth T, Schubert F, Földes T, Hollós Cs, Komlósi J (2002) Modelling of the fractured Dorozsma crystalline reservoir, SE Pannonian Basin. EAGE Annual Meeting Abstracts 297

  • M. Tóth T, Szűcs É, Schubert F, Hollós Cs (2004) Conceptual fracture network model of the crystalline basement of the Szeghalom Dome (Pannonian Basin, SE Hungary). Acta Geol Hung 47(1):19–34

    Article  Google Scholar 

  • M. Tóth T, Zachar J (2006) Petrology and deformation history of the metamorphic basement in the Mezősas-Furta crystalline high (SE Hungary). Acta Geol Hung 49(2):165–188

    Article  Google Scholar 

  • M. Tóth T, Redlerné Tátrai M, Kummer I (2009) A Szeghalom környéki metamorf aljzat kiemelkedés szerkezetfejlődése és felépítése kőzettani és szezmikus adatok alapján. Magy Geofiz 49(4):143–151

    Google Scholar 

  • Nagy À, M. Tóth T (2012) Petrology and tectonic evolution of the Kiskunhalas-NE fractured CH-reservoir. S-Hung Cent Eur Geol 55(1):1–22

    Article  Google Scholar 

  • Ortega OJ, Marrett RA, Laubach SE (2006) A scale-independent approach to fracture intensity and average spacing measurement. Am Assoc Pet Geol Bull 90(2):193–208

    Google Scholar 

  • Philpotts AR, Shi J, Brustman C (1998) Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395:343–346

    Article  Google Scholar 

  • Rabcewicz L (1964a) The New Austrian tunnelling method, part one. Water Power November:453–457

    Google Scholar 

  • Rabcewicz L (1964b) The New Austrian tunnelling method, part two. Water Power December:511–515

    Google Scholar 

  • Rahl J, Anderson K, Brandon M, Fassoulas C (2005) Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: calibration and application to tectonic exhumation in Crete. Greece Earth Planet Sci Lett 240(2):339–354

    Article  Google Scholar 

  • Raynaud S, Fabre D, Mazetolle F, Geraud Y, Latiere HJ (1989) Analysis of the internal structure of rocks and characterization of mechanical deformation by a non-destructive method: X-ray tomodensitometry. Tectonophysics 159:149–159

    Article  Google Scholar 

  • Schubert F, Diamond LW, M. Tóth T (2007) Fluid inclusion evidence of petroleum migration through a buried metamorphic dome in the Pannonian Basin. Hung Chem Geol 244(3–4):357–381

    Article  Google Scholar 

  • Seo YS, Jeong GC, Kim JS, Ichikawa Y (2002) Microscopic observation and contact stress analysis of granite under compression. Eng Geol 63(3–4):259–275

    Article  Google Scholar 

  • Szederkényi T (1984) Az Alföld kristályos aljzata és földtani kapcsolatai. DSc Thesis

  • Stegena L, Horváth F, Landy I, Nagy Z, Rumpler J (1992) High enthalpy geothermal reservoirs in Hungary. Földt Közlöny 122(2–4):195–208

    Google Scholar 

  • Tari G, Horváth F, Rumpler J (1992) Styles of extension in the Pannonian Basin. Tectonophysics 208:203–219

    Article  Google Scholar 

  • Tari G, Dövényi P, Dunkl I, Horváth F, Lenkey L, Stefanescu M, Szafián P, Tóth T (1999) Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The mediterranean basins: tertiary extension within the Alpine Orogen. Geol Soc, Lond, Spec Publ, vol 156, pp 215–250

    Google Scholar 

  • T. Kovács G (1973) A Duna-Tisza köze déli részének földtani fejlődés története. DSc Thesis, Szeged, Hungary

  • T. Kovács G, Kurucz B (1984) A dél-alföld mezozoikumnál idősebb képződményei. MÁFI, Budapest

    Google Scholar 

  • Tsuchiya N, Nakatsuka K (1995) A two-dimensional mono-fractal approach to natural fracture networks in rock. Geotherm Sci Technol 6:63–82

    Google Scholar 

  • Van Geet M, Swennen R, Wevers M (2000) Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography. Sediment Geol 132:25–36

    Article  Google Scholar 

  • Vinegar HJ, De Waal JA, Wellington SL (1991) CT studies of Brittle failure in Castlegat Sandstone. Int J Rock Mech Min Sci 28:441–448

    Article  Google Scholar 

  • Wellington SL, Vinegar HJ (1987) X-ray computerized tomography. J Pet Technol 39:885–898

    Google Scholar 

  • Wibberley C (1999) Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones? J Struct Geol 21(8–9):1219–1227

    Article  Google Scholar 

  • White SH, Knipe RJ (1978) Transformation- and reaction-enhanced ductility in rocks. J Geol Soc 135(5):513–516

    Article  Google Scholar 

  • Williams G, Dixon J (1982) Reaction and geometrical softening in Granitoid Mylonites. Textures Microstruct 4(4):223–239

    Article  Google Scholar 

  • Zachar J, M. Tóth T (2004) Pertology of the metamorphic basement of the Tisza Block at the Jánoshalma High, S Hungary. Acta Geol Hung 47(4):349–371

    Article  Google Scholar 

  • Zachar J, M. Tóth T, Janák M (2007) Kyanite eclogite xenolith from the orthogneiss terrane of the Tisza Megaunit, Jánoshalma area, crystalline basement of southern Hungary. Lithos 99(3–4):249–265

    Article  Google Scholar 

Download references

Acknowledgements

We thank MOL Hungarian Oil and Gas Company for making the study of the samples and thin sections possible. Balázs Kiss is thanked for the fruitful discussions about the behaviour of the KIHA-NE reservoir. The publication is supported by the European Union and co-funded by the European Social Fund. Project title: “Broadening the knowledge base and supporting the long term professional sustainability of the Research University Centre of Excellence at the University of Szeged by ensuring the rising generation of excellent scientists”. Project number: TÁMOP-4.2.2/B-10/1-2010-0012. English was corrected by Proof-Reading-Service.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, Á., Tóth, T.M., Vásárhelyi, B. et al. Integrated core study of a fractured metamorphic HC-reservoir; Kiskunhalas-NE, Pannonian Basin. Acta Geod Geophys 48, 53–75 (2013). https://doi.org/10.1007/s40328-012-0008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-012-0008-y

Keywords

Navigation