Skip to main content
Log in

The Visual Angle Metric and Möbius Transformations

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

A new similarity invariant metric \(v_G\) is introduced. The visual angle metric \(v_G\) is defined on a domain \(G\subsetneq {{\mathbb {R}}}^n\) whose boundary is not a proper subset of a line. We find sharp bounds for \(v_G\) in terms of the hyperbolic metric in the particular case when the domain is either the unit ball \({\mathbb {B}}^n\) or the upper half space \({\mathbb {H}}^n\). We also obtain the sharp Lipschitz constant for a Möbius transformation \(f: G\rightarrow G'\) between domains \(G\) and \(G'\) in \({{\mathbb {R}}}^n\) with respect to the metrics \(v_G\) and \(v_{G'}\). For instance, in the case \(G=G'={\mathbb {B}}^n\) the result is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The term “visual metric” occurs in a different meaning in the study of Gromov hyperbolic spaces, see [7, Sec. 3.3].

References

  1. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal invariants, inequalities and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)

    Google Scholar 

  2. Anderson, G.D., Vuorinen, M., Zhang, X.-H.: Topics in special functions III, Analytic Number Theory, Approximation Theory and Special Functions. In: Alladi, K., Milovanovic, G., Rassias, M.Th. (eds.), pp. 39–85. Springer, New York (2014)

  3. Aseev, V.V., Sychëv, A.V., Tetenov, A.V.: Möbius-invariant metrics and generalized angles in Ptolemaic spaces. Sib. Math. J. 46, 189–204 (2005)

    Article  Google Scholar 

  4. Beardon, A.F.: The geometry of discrete groups, Graduate Texts in Mathematics 91. Springer, New York (1983)

    Book  Google Scholar 

  5. Beardon, A.F.: The Apollonian metric of a domain in \(\mathbb{R}^{n}\). Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), pp. 91–108. Springer, New York (1998)

    Google Scholar 

  6. Berger, M.: Geometry II. Universitext. Springer, Berlin (1987)

    Book  Google Scholar 

  7. Buyalo, S., Schroeder, V.: Elements of asymptotic geometry. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2007)

    Book  MATH  Google Scholar 

  8. Gehring, F.W., Palka, B.P.: Quasiconformally homogeneous domains. J. Anal. Math. 30, 172–199 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hästö, P.A.: A new weighted metric: the relative metric I. J. Math. Anal. Appl. 274, 38–58 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hästö, P.A., Ibragimov, Z., Minda, D., Ponnusamy, S., Sahoo, S.: Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis, In the tradition of Ahlfors-Bers. IV. Contemporary Mathematics 432, pp. 63–74. American Mathematical Society, Providence (2007)

    Google Scholar 

  11. Keen, L., Lakic, N.: Hyperbolic geometry from a local viewpoint. London Mathematical Society Student Texts 68. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  12. Klén, R.: On hyperbolic type metrics. Dissertation, University of Turku, Ann. Acad. Sci. Fenn. Math. Diss. No. 152 (2009)

  13. Klén, R.: Close-to-convexity of quasihyperbolic and j-metric balls. Ann. Acad. Sci. Fenn. Math. 35, 493–501 (2010)

  14. Klén, R.: Local convexity properties of Apollonian and Seittenranta’s metric balls. Conform. Geom. Dyn. 17, 133–144 (2013)

  15. Klén, R., Vuorinen, M., Zhang, X.-H.: Quasihyperbolic metric and Möbius transformations. Proc. Am. Math. Soc. 142, 311–322 (2014)

    Article  MATH  Google Scholar 

  16. Lindén, H.: Studies on geometry and Sobolev spaces. Licentiate Thesis. Dept. Math. Stat. University of Helsinki (2003)

  17. Lindén, H.: Quasihyperbolic geodesics and uniformity in elementary domains. Dissertation, University of Helsinki, Ann. Acad. Sci. Fenn. Math. Diss. No. 146 (2005)

  18. Papadopoulos, A., Troyanov, M.: Weak metrics on Euclidean domains. JP J. Geom. Topol. 7, 23–44 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Seittenranta, P.: Möbius-invariant metrics. Math. Proc. Camb. Philos. Soc. 125, 511–533 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vuorinen, M.: Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics. Springer, Berlin (1988)

    MATH  Google Scholar 

  21. Vuorinen, M.: Geometry of metrics. J. Anal. 18, 399–424 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Academy of Finland, Project 2600066611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gendi Wang.

Additional information

Communicated by Olli Martio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klén, R., Lindén, H., Vuorinen, M. et al. The Visual Angle Metric and Möbius Transformations. Comput. Methods Funct. Theory 14, 577–608 (2014). https://doi.org/10.1007/s40315-014-0075-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-014-0075-x

Keywords

Mathematics Subject Classification (2010)

Navigation