Skip to main content
Log in

Stationary solution for transient quantum hydrodynamics with bohmenian-type boundary conditions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

We derive rigorously a set of boundary conditions for heterogenous devices using a description via the quantum hydrodynamic system provided by the Madelung transformations. In particular, we show that the generalized enthalpy should be constant at the interface between classical and quantum domains. This condition provides a set of boundary conditions, which we use to prove the existence and the uniqueness of regular steady solutions of the quantum hydrodynamic system. Finally, we analyse the linear stability of the system supplied with our boundary conditions and we test numerically our model on a toy device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ascher U, Christiansen J, Russell RD (1979) A collocation solver for mixed order systems of boundary value problems. Math Comput 33(146):659–679

    Article  MathSciNet  MATH  Google Scholar 

  • Antonelli P, Marcati P (2009) On the finite energy weak solutions to a system in quantum fluid dynamics. Commun Math Phys 287(2):657–686

    Article  MathSciNet  MATH  Google Scholar 

  • Antonelli P, Marcati P (2012) The quantum hydrodynamics system in two space dimensions. Arch Ration Mech Anal 203(2):499–527

    Article  MathSciNet  MATH  Google Scholar 

  • Brezzi F, Gasser I, Markowich PA, Schmeiser C (1995) Thermal equilibrium states of the quantum hydrodynamic model for semiconductors in one dimension. Appl Math Lett 8(1):47–52

    Article  MathSciNet  MATH  Google Scholar 

  • Bader G, Ascher U (1987) A new basis implementation for a mixed order boundary value ODE solver. SIAM J Sci Stat Comput 8:483–500

    Article  MathSciNet  MATH  Google Scholar 

  • Calderón-Muñoz WR, Jena D, Sen M (2009) Hydrodynamic instability of confined two-dimensional electron flow in semiconductors. J Appl Phys 106(1):014506

    Article  Google Scholar 

  • Calderón-Muñoz WR, Jena D, Sen M (2010) Temperature influence on hydrodynamic instabilities in a one-dimensional electron flow in semiconductors. J Appl Phys 107(7):074504

    Article  Google Scholar 

  • Di Michele F, Marcati P, Rubino B (2013) Steady states and interface transmission conditions for heterogeneous quantum-classical 1-d hydrodynamic model of semiconductor devices. Phys D 243:1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Gasser I, Jüngel A (1997) The quantum hydrodynamic model for semiconductors in thermal equilibrium. Z Angew Math Phys 48(1):45–59

    Article  MathSciNet  MATH  Google Scholar 

  • Gyi MT, Jüngel A (2000) A quantum regularization of the one-dimensional hydrodynamic model for semiconductors. Adv Differ Equ 5(4–6):773–800

    MathSciNet  MATH  Google Scholar 

  • Gualdani MP, Jüngel A (2004) Analysis of the viscous quantum hydrodynamic equations for semiconductors. Eur J Appl Math 15(5):577–595

    Article  MathSciNet  MATH  Google Scholar 

  • Jüngel A, Li H (2004) Quantum Euler–Poisson systems: existence of stationary states. Arch Math (Brno) 40:435–456

    MathSciNet  MATH  Google Scholar 

  • Jüngel A, Pinnau R (2003) Convergent semidiscretization of a nonlinear fourth order parabolic system. M2AN Math Model Numer Anal 37(2):277–289

    Article  MathSciNet  MATH  Google Scholar 

  • Marcati P, Pan R (2001) On the diffusive profiles for the system of compressible adiabatic flow through porous media. SIAM J Math Anal 4:790–826

    Article  MathSciNet  MATH  Google Scholar 

  • Marcati P, Mei M, Rubino B (2005) Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping. J Math Fluid Mech suppl. 2:S224–S240

  • Nishibata S, Suzuki M (2008) Initial boundary value problems for a quantum hydrodynamic model of semiconductors: asymptotic behaviors and classical limits. J Differ Equ 244(4):836–874

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang B, Jerome J (1996) On a steady-state quantum hydrodynamic model for semiconductors. Nonlinear Anal 26(4):845–856

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Rubino.

Additional information

Communicated by Armin Iske.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Michele, F., Marcati, P. & Rubino, B. Stationary solution for transient quantum hydrodynamics with bohmenian-type boundary conditions. Comp. Appl. Math. 36, 459–479 (2017). https://doi.org/10.1007/s40314-015-0235-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-015-0235-2

Keywords

Mathematics Subject Classification

Navigation