Skip to main content
Log in

Vector Control of Induction Motor Using an Integral Sliding Mode Controller with Anti-windup

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This work presents a sliding mode controller, applied to the three-phase induction motor using indirect field-oriented control technique. A possible approach for chattering reduction with high degree of robustness is based on the switching saturation function, although it presents steady-state error. This paper, therefore, proposes an integral sliding mode controller with a new anti-windup, which has low overshoot and no steady-state error. In addition, an approach using a switching sigmoid function is presented. The motor performance is verified by means of numeric simulations and experimental tests with load disturbances. The proposed controller presents better results when compared to other conventional sliding mode controllers and a tuned PI controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Astrom, K. J., & Hagglund, T. (2005). Advanced PID control. Research Triangle Park, NC: Instrument Society of America.

    Google Scholar 

  • Barambones, O., Garrido, A. J., & Maseda, F. J. (2007). Integral sliding-mode controller for induction motor based on field-oriented control theory. IET Control Theory and Applications, 1(3), 786–794.

    Article  Google Scholar 

  • Ben Azza, H., Zaidi, N., Jemli, M., & Boussak, M. (2014). Development and experimental evaluation of a sensorless speed control of SPIM using adaptive sliding mode-MRAS strategy. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(2), 319–328.

    Article  Google Scholar 

  • Costa, B. L. G., Angélico, B. A., Goedtel, A., Castoldi, M. F., & Graciola, C. L. (2015). Differential evolution applied to DTC drive for three-phase induction motors using an adaptive state observer. Journal of Control, Automation and Electrical Systems, 26(4), 403–420.

    Article  Google Scholar 

  • Di Gennaro, S., Rivera Dominguez, J., & Meza, M. A. (2014). Sensorless high order sliding mode control of induction motors with core loss. IEEE Transactions on Industrial Electronics, 61(6), 2678–2689.

    Article  Google Scholar 

  • El-Sousy, F. F. M. (2013). Adaptive dynamic sliding-mode control system using recurrent RBFN for high-performance induction motor servo drive. IEEE Transactions on Industrial Informatics, 9(4), 1922–1936.

    Article  Google Scholar 

  • Harnefors, L., Saarakkala, S. E., & Hinkkanen, M. (2013). Speed control of electrical drives using classical control methods. IEEE Transactions on Industry Applications, 49(2), 889–898.

    Article  Google Scholar 

  • Hung, J. Y., Gao, W., & Hung, J. C. (1993). Variable structure control: A survey. IEEE Transactions on Industrial Electronics, 40(1), 2–22.

    Article  Google Scholar 

  • Levant, A. (1998). Robust exact differentiation via sliding mode technique. Automatica, 34(3), 379–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X. L., Park, J. G., & Shin, H. B. (2011). Comparison and evaluation of anti-windup PI controllers. Journal of Power Electronics, 11(1), 45–50.

    Article  Google Scholar 

  • Mahmoudi, M. O., Madani, N., Benkhoris, M. F., & Boudjema, F. (2007). Cascade sliding mode control of a field oriented induction machine drive. The European Physical Journal Applied Physics, 7(3), 217–225.

    Article  Google Scholar 

  • Panchade, V. M., Waghmare, L., Patre, B. M., & Bhogle, P. P. (2011). Robust control, theory and applications (vol. 1). InTech

  • Park, Min-Ho, & Kim, Kyung-Seo. (1991). Chattering reduction in the position control of induction motor using the sliding mode. IEEE Transactions on Power Electronics, 6(3), 317–325.

  • Pupadubsin, R., Chayopitak, N., Taylor, D. G., Nulek, N., Kachapornkul, S., Jitkreeyarn, P., et al. (2012). Adaptive integral sliding-mode position control of a coupled-phase linear variable reluctance motor for high-precision applications. IEEE Transactions on Industry Applications, 48(4), 1353–1363.

  • Ravi Teja, A. V., Chakraborty, C., Maiti, S., & Hori, Y. (2012). A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Transactions on Industrial Electronics, 59(10), 3757–3767.

    Article  Google Scholar 

  • Saghafinia, A., Ping, H. W., Uddin, M. N., & Gaeid, K. S. (2015). Adaptive fuzzy sliding-mode control into chattering-free IM drive. IEEE Transactions on Industry Applications, 51(1), 692–701.

    Article  Google Scholar 

  • Scottedward Hodel, A., & Hall, C. (2001). Variable-structure PID control to prevent integrator windup. IEEE Transactions on Industrial Electronics, 48(2), 442–451.

    Article  Google Scholar 

  • Sepulchre, R., Devos, T., Jadot, F., & Malrait, F. (2013). Antiwindup design for induction motor control in the field weakening domain. IEEE Transactions on Control Systems Technology, 21(1), 52–66.

    Article  Google Scholar 

  • Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). Sliding mode control and observation. Hardcover.

  • Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. New Jersey: Prentice Hall.

    MATH  Google Scholar 

  • Utkin, V. (1977). Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(2), 212–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Utkin, V. (1993). Sliding mode control design principles and applications to electric drives. IEEE Transactions on Industrial Electronics, 40(1), 23–36.

    Article  Google Scholar 

  • Utkin, V. I., Guldner, J., & Shi, J. (2009). Sliding mode control in electro-mechanical systems (2nd ed.). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Vas, P. (1990). Vector control of AC machines. Monographs in electrical and electronic engineering. Oxford: Clarendon Press.

    Google Scholar 

  • Vas, P. (1999). Artificial-intelligence-based electrical machines and drives: Application of fuzzy, neural, fuzzy-neural, and genetic-algorithm-based techniques. Oxford: Oxford University Press.

    Google Scholar 

  • Wai, R. J., & Su, K. H. (2006). Adaptive enhanced fuzzy sliding-mode control for electrical servo drive. IEEE Transactions on Industrial Electronics, 53(2), 569–580.

    Article  Google Scholar 

  • Wang, K., Chen, B., Shen, G., Yao, W., Lee, K., & Lu, Z. (2014). Online updating of rotor time constant based on combined voltage and current mode flux observer for speed-sensorless AC drives. IEEE Transactions on Industrial Electronics, 61(9), 4583–4593.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support granted by CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. R. Oliveira.

Appendices

Appendix 1: Parameters of the Controllers

ISMC-AW (\(\omega _\mathrm{m}\))

\(\zeta \, _\mathrm{M} = 2.7\)

\(\phi = 9\)

\(\lambda _{\omega \mathrm{m}} = 25\)

\(\sigma = 300\)

ISMC (\(\omega _\mathrm{m}\))

\(\zeta \, _\mathrm{M} = 2.7\)

\(\phi = 9\)

\(\lambda _{\omega \mathrm{m}} = 1\)

CONVENTIONAL SMC (\(\omega _\mathrm{m}\))

\(\zeta \, _\mathrm{M} = 2.7\)

\(\phi = 9\)

TUNED PI (\(\omega _\mathrm{m}\))

\(\zeta \, _\mathrm{sat} = 2.7\)

\(K_p = 0.22\)

\(K_i = 4.2452\)

\(K_b = 0.25\)

PI current controllers (\(i_{\mathrm{d}s}\),\(i_\mathrm{qs}\))

\(\zeta \, _\mathrm{sat} = 311\)

\(K_p = 12.79\)

\(K_i = 2256\)

Appendix 2: Induction Motor Data

Parameter

Value

Unit

Power

1

HP

\(R_\mathrm{s}\)

7.5022

\(\Omega \)

\(R_\mathrm{r}\)

4.8319

\(\Omega \)

\((L_\mathrm{s}\) e \(L_\mathrm{r})\)

718.5

mH

\(L_\mathrm{m}\)

694.1

mH

p

1

 

J

\(2.028 \, 10^{-3}\)

Kg m\(^2\)

F

\(1.362 \, 10^{-3}\)

N m s

Voltage

220

V

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C.M.R., Aguiar, M.L., Monteiro, J.R.B.A. et al. Vector Control of Induction Motor Using an Integral Sliding Mode Controller with Anti-windup. J Control Autom Electr Syst 27, 169–178 (2016). https://doi.org/10.1007/s40313-016-0228-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0228-4

Keywords

Navigation