Skip to main content
Log in

Stability Results for Semi-linear Parabolic Equations Backward in Time

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

Let H be a Hilbert space with the norm ∥⋅∥, and let A:D(A) ⊂ HH be a positive self-adjoint unbounded linear operator on H such that −A generates a C 0 semi-group on H. Let φ be in H, E > ε a given positive number and let f : [0, THH satisfy the Lipschitz condition ∥f(t, w 1)−f(t, w 2)∥ ≤ kw 1w 2∥,w 1,w 2H, for some non-negative constant k independent of t, w 1 and w 2. It is proved that if u 1 and u 2 are two solutions of the ill-posed semi-linear parabolic equation backward in time u t + A u = f(t, u), 0 < tT,∥u(T)−φ∥ ≤ ε and ∥u i (0)∥ ≤ E, i = 1,2, then

$$\|u_{1}(t)-u_{2}(t)\| \leq 2\varepsilon^{t/T} E^{1-t/T}\exp\Big[\Big(2k+\frac{1}{4}k^{2}(T+t)\Big)\frac{t(T-t)}{T}\Big] \quad \forall t \in [0,T]. $$

The ill-posed problem is stabilized by a modification of Tikhonov regularization which yields an error estimate of Hölder type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agoshkov, V.I.: Optimal Control Methods and the Method of Adjoint Equations in Problems of Mathematical Physics. Russian Academy of Sciences, Institute for Numerical Mathematics, Moscow (2003). (Russian)

    MATH  Google Scholar 

  2. Alifanov, O.M.: Inverse Heat Transfer Problems. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, New York (2006)

    MATH  Google Scholar 

  4. Beck, J.V., Blackwell, B., Clair, St.C.R.: Inverse Heat Conduction, Ill-Posed Probl. Wiley, New York (1985)

    MATH  Google Scholar 

  5. Carasso, A.S.: Hazardous continuation backward in time in nonlinear parabolic equations, and an experiment in deblurring nonlinearly blurred imagery. J. Res. Natl. Inst. Stand. Technol. 118, 199–217 (2013)

    Article  Google Scholar 

  6. Cartan, H.: Differential Calculus. Kershaw publishing company Ltd (1971)

  7. Ghidaglia, J.M.: Some backward uniqueness results. Nonlinear Anal. 8, 777–790 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hào, D.N.: Methods for Inverse Heat Conduction Problems. Peter Lang Verlag, Frankfurt/Main, Bern, New York, Paris (1998)

  9. Hào, D.N., Duc, N.V., Lesnic, D.: Regularization of parabolic equations backwards in time by a non-local boundary value problem method. IMA J. Appl. Math. 75, 291–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hào, D.N., Duc, N.V.: A non-local boundary value problem method for semi-linear parabolic equations backward in time. Appl. Anal. 94, 446–463 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kukavica, I.: Log-log convexity and backward uniqueness. Proc. Am. Math. Soc. 135, 2415–2421 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lavrent’ev, M.M., Romanov, V.G., Shishatskii, G.P.: Ill-posed Problems in Mathematical Physics and Analysis. Am. Math. Soc., Providence, R. I. (1986)

  13. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  14. Long, N.T., Dinh, A.P.N.: Approximation of a parabolic non-linear evolution equation backward in time. Inverse Probl. 10, 905–914 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Long, N.T., Dinh, A.P.N.: Note on a regularization of a parabolic nonlinear evolution equation backwards in time. Inverse Probl. 12, 455–462 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nam, P.T.: An approximate solution for nonlinear backward parabolic equations. J. Math. Anal. Appl. 367, 337–349 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Quan, P.H., Trong, D.D., Triet, L.M.: On a backward nonlinear parabolic equation with time and space dependent thermal conductivity: regularization and error estimates. J. Inverse Ill-Posed Probl. 22, 375–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Payne, L.: Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia (1975)

  19. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44 Springer-Verlag (1983)

  20. Shutyaev, V.P.: Control Operators and Iterative Algorithms in Variational Data Assimilation Problems. Nauka, Moscow. (Russian) (2001)

  21. Tautenhahn, U.: Optimality for ill-posed problems under general source conditions. Numer. Funct. Anal. Optim. 19, 377–398 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tautenhahn, U., Schröter, T.: On optimal regularization methods for the backward heat equation. Z. Anal. Anwend. 15, 475–493 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Trong, D.D., Tuan, N.H.: Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation. Nonlinear Anal. 71, 4167–4176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Vietnam Ministry of Education and Training under grant number B2013-27-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Duc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Duc, N., Van Thang, N. Stability Results for Semi-linear Parabolic Equations Backward in Time. Acta Math Vietnam 42, 99–111 (2017). https://doi.org/10.1007/s40306-015-0163-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-015-0163-7

Keywords

Mathematics Subject Classification (2010)

Navigation