Skip to main content
Log in

Computer Aided Ballistic Orbit Classification Around Small Bodies

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Orbital dynamics around small bodies are as varied as the shapes and dynamical states of these bodies. While various classes of orbits have been analyzed in detail, the global overview of relevant ballistic orbits at particular bodies is not easily computed or organized. Yet, correctly categorizing these orbits will ease their future use in the overall trajectory design process. This paper overviews methods that have been used to organize orbits, focusing on periodic orbits in particular, and introduces new methods based on clustering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Numbers in the table are rounded to the 3rd decimal point.

  2. The use of the period in particular is relevant in avoiding the intersection of period doubling families when they reduce to an orbit with apparently 1/2 of the period.

References

  1. Miller, J.K., Konopliv, A.S., Antreasian, P.G., Bordi, J.J., Chesley, S., Helfrich, C.E., Owen, W.M., Wang, T.C., Williams, B.G., Yeomans, D.K., Scheeres, D.J.: Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155(1), 3–17 (2002)

    Article  Google Scholar 

  2. Laurettam, D.S.: Overview of the OSIRIS-REx Asteroid Sample Return Mission. 43rd Lunar and Planetary Science Conference, No. 2491 (2012)

  3. Berry, K., Sutter, B., May, A., Williams, K., Barbee, B.W., Beckman, M., Williams, B.: (TAG) Mission Design and Analysis, Proceedings of the 36th Annual AAS Guidance, Navigation and Control Conference, Vol. Paper AAS 13-095 (2013)

  4. Scheeres, D.J.: Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters. Springer Praxis, Berlin Heidelberg (2012)

  5. Villac, B., Liu, K.Y.-Y.: Long-term Stable Orbits for Passive Tracking Beacon Missions to Asteroids. In: Proceedings of the 2009 International Astronautical Congress (IAC), vol. IAC-09.C1.10.6 (2009)

  6. Mondelo, J.-M., Broschart, S.B.: Ballistic Transfer Across the 1:1 Resonance Around Vesta Following Invariant Manifolds. J. Guid. Control Dyn. 36, 1119-1133 (2013)

    Article  Google Scholar 

  7. Rayman, M.D., Fraschetti, T.C., Raymond, C.A., Russell, C.T.: Dawn: A Mission in Development for Exploration of Main Belt Asteroids Vesta and Ceres. Acta Astronaut. 58(11), 605– 616 (2006)

    Article  Google Scholar 

  8. Doedel, E., Paffenroth, R., Keller, H.B., Dichmann, D.J., Galan-Vioque, J., Vanderbauwhede, A.: Computation of periodic solutions of conservative systems with application to the 3-body problem. Int. J. Bifurc. Chaos 6, 1–29 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Broschart, S.B., Villac, B.F.: Identification of Non-Chaotic Terminator Orbits Near 6489 Golevka. In: Segerman, A.M., Lai, P.C., Wilkins, M.P., Pittelkau, M.E. (eds.) Spaceflight Mechanics: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting held February 9-12, 2009, Savannah, Georgia. Vol. 134 of Advances in the Astronautical Sciences, San Diego, CA, American Astronautical Society, Univelt Inc. (2009)

  10. Liu, K., Villac, B.: Periodic Orbit Families in the Hill’s Three-Body Problem with Solar Radiation Pressure. AAS Spaceflight Mechanics Meeting, No. AAS 10-118 (2010)

  11. Garcia Yárnoz, D., Scheeres, D.J., McInnes, C.R.: On the a and g Families of Symmetric Periodic Orbits in the Photo-Gravitational Hill Problem and Their Application to Asteroids. AIAA/AAS Astrodynamics Specialist Conference, No. AIAA 2014-4119, San Diego, California (2014)

  12. Anderson, R.L., Campagnola, S., Lantoine, G.: Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem. AAS/AAIA Astrodynamics Specialist Conference, No. AAS 13-787, Hilton Head Island, South Carolina (2013)

  13. Chow, C., Villac, B.: Mapping autonomous constellation design spaces using numerical continuation. J. Guid. Control Dyn. 35(5), 1426–1434 (2012)

    Article  Google Scholar 

  14. Giancotti, M., campagnola, S.: Families of periodic orbits in Hill’s problem with solar radiation pressure: application to Hayabusa 2. Cel. Mech. Dyn. Astron. 120(3), 269-286 (2014)

    Article  MathSciNet  Google Scholar 

  15. Anderson, R.L.: Tour Design Using Resonant Orbit Heteroclinic Connections in Patched Circular Restricted Three-Body Problems. 23rd AAS/AIAA Space Flight Mechanics Meeting, No. AAS 13-493, Kauai, Hawaii (2013)

  16. Anderson, R.L., Lo, M.W.: Spatial approaches to moons from resonance relative to invariant manifolds. Acta Astronaut. 105, 355–372 (2014)

    Article  Google Scholar 

  17. Tsirogiannis, G.A., Perdios, E.A., Markellos, V.V.: Improved grid search method: an efficient tool for global computation of periodic orbits. Cel. Mech. Dyn. Astron. 1, 49–78 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Arnal Fort, E., Villac, B.: Exploration of a Graph Based Method for Orbital Transfers near Small Bodies, 2013 AAS/AIAA Astrodynamics Specialist Conference, No. AAS 13-81 (2013)

  19. Tsirogiannis, G.A., Markellos, V.: A greedy global search algorithm for connecting unstable periodic orbits with low energy cost.: Application to the Earth-Moon system. Cel. Mech. Dyn. Astron 117, 2 (2013)

    Article  MathSciNet  Google Scholar 

  20. Broschart, S.B., Lantoine, G., Grebow, D.J.: Characteristics of Quasi-Terminator Orbits Near Primitive Bodies. In: Tanygin, S., Park, R.S., Thomas J., Starchville, J., Newman, L.K. (eds.) Spaceflight Mechanics: Proceedings of the AAS/AIAA Spaceflight Mechanics Conference August held February 10-14, 2013 in Kauai, Hawaii. Vol. 148 of Advances in the Astronautical Sciences, San Diego, California, American Astronautical Society, Univelt Inc., 2013, pp. 953–968

  21. Lantoine, G., Broschart, S.B., Grebow, D.J., Design of Quasi-Terminator Orbits Near Primitive Bodies, AAS/AAIA Astrodynamics Specialist Conference, No. AAS 13-815. Hilton Head Island, South Carolina (2013)

  22. Mondelo, J.M., Barrabés, E., Gómez, G., Ollé, M.: Numerical parametrization of libration point trajectories and their invariant manifolds. Adv. Astronaut. Sci. 129, 1153–1168 (2008)

    Google Scholar 

  23. Olikara, Z., Howell, K.: Computation of Quasi-Periodic Orbit Invariant Tori in the Restricted Three-Body Problem, AAS Spaceflight Mechanics Meeting, No. AAS 10-120. West Lafayette, Indiana (2010)

  24. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Cel. Mech. Dyn. Astron. 112 (2012)

  25. Villac, B.F.: Using FLI maps for preliminary spacecraft trajectory design in Multi-Body environments. Celest. Mech. Dyn. Astron. 102(1-3), 29–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Anderson, R.L., Lo, M.W.: Flyby Design using Heteroclinic and Homoclinic Connections of Unstable Resonant Orbits. In: Jah, M.K., Guo, Y., Bowes, A.L., Lai, P.C. (eds.) Spaceflight Mechanics: Proceedings of the 21st AAS/AIAA Space Flight Mechanics Meeting held February 13-17, 2011, New Orleans, Louisiana. Vol. 140 of Advances in the Astronautical Sciences, San Diego, California, American Astronautical Society, Univelt Inc., 2011, pp. 321–340

  27. Anderson, R.L.: Approaching Moons from Resonance via Invariant Manifolds. 22nd AAS/AIAA Space Flight Mechanics Meeting, No. AAS 12-136, Charleston, South Carolina (2012)

  28. Schlei, W.R., Howell, K.C., Tricoche, X.M., Garth, C.: Enhanced Visualization and Autonomous Extraction of Poincaré Map Topology. AAS/AIAA Astrodynamics Specialist Conference, No. AAS 13-903, Hilton Head Island, South Carolina (2013)

  29. Nakhjiri, N., Villac, B.: Automated Stable Region Detection. AAS Spaceflight Mechanics Meeting, No. AAS 13-904, Irvine, California (2013)

  30. Trumbauer, E.: Autonomous Trajectory Redesign for Phobos Orbital Operations. 24th AAS/AIAA Space Flight Mechanics Meeting, No. AAS 14-270, Santa Fe, New Mexico (2014)

    Google Scholar 

  31. Anderson, R.L., Parker, J.S.: Survey of ballistic transfers to the lunar surface. J. Guid. Control Dyn. 35, 1256–1267 (2012)

    Article  Google Scholar 

  32. Anderson, R.L., Parker, J.S.: Comparison of Low-Energy lunar transfer trajectories to invariant manifolds. Celest. Mech. Dyn. Astron. 115, 311–331 (2013)

    Article  Google Scholar 

  33. Parker, J.S., Anderson, R.L.: Targeting low-energy transfers to low lunar orbit. Acta Astronautica 84, 1-14 (2013)

    Article  Google Scholar 

  34. Parker, J.S., Anderson, R.L., Peterson, A.: Surveying ballistic transfers to low lunar orbit. J. Guid. Control. Dyn. 36(5), 1501–1511 (2013)

    Article  Google Scholar 

  35. Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, Vol. 12 of JPL Deep Space Communications and Navigation Series, 1st edn. Wiley, Hoboken, New Jersey (2014)

  36. Strange, N., Landau, D., McElrath, T., Lantoine, G., Lam, T., McGuire, M., Burke, L., Martini, M., Dankanish, J.: Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept. 33rd International Electric Propulsion Conference, No. IPEC-2013-321, Washington, DC (2013)

  37. Reeves, D.M., Naasz, B.J., Wright, C.A., Pini, A.J.: Proximity operations for the robotic boulder capture option for the asteroid redirect mission. AIAA SPACE 2014 Conference and Exposition, No. AIAA 2014-4433, San Diego, California (2014)

  38. Brophy, J.R., Friedman, L., Strange, N.J., Prince, T.A., Landau, D., Jones, T., Schweickart, R., Lewicki, C., Elvis, M., Manzella, D.: Synergies of Robotic Asteroid Redirection Technologies and Human Space Exploration. 65th International Astronautical Congress, No. IAC-14.A5.3-B3.6.7,x26388, Toronto, Canada (2014)

  39. Scheeres, D.J., Gaskell, R., Abe, S., Barnouin-Jha, O., Hashimoto, T., Kawaguchi, J., Kubota, T., Saito, J., Yoshikawa, M., Hirata, N., Mukai, T., Ishiguro, M., Kominato, T., Shirakawa, K., Uo, M.: The Actual Dynamical Environment About Itokawa. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, No. AIAA 2006-6661, Keystone, Colorado (2006)

  40. Busch, M.W., Ostro, S.J., Benner, L.A.M., Brozovic, M., Giorgini, J.D., Jao, J.S., Scheeres, D.J., Magri, C., Nolan, M.C., Howell, E.S., Taylor, P.A., Margot, J. -L., Brisken, W.: Radar observations and the shape of Near-Earth asteroid 2008 EV5. Icarus 212, 649–660 (2011)

    Article  Google Scholar 

  41. Llanos, P.J., Miller, J.K., Hintz, G.R.: Orbital Evolution and Environmental Analysis Around Asteroid 2008 EV5, No. AAS 14-360 (2014)

  42. Markellos, V.V., Roy, A.E., Velgakis, M.J., Kanavos, S.S.: A photogravitational Hill problem and radiation effects on hill stability of orbits. Astrophys. Space Sci. 271, 293–301 (2000)

    Article  MATH  Google Scholar 

  43. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Cel. Mech. Dyn. Astron. 65, 313–344 (1996/1997)

  44. Colombi, A., Hirani, A., Villac, B.: Adaptive gravitational force representation for fast trajectory propagation near small bodies. J. Guid. Control. Dyn. 31(4), 1041–1051 (2008)

    Article  Google Scholar 

  45. Vallado, D.A.: Fundamentals of astrodynamics and applications microcosm press (2007)

  46. Sternberg, S.: Dynamical systems Dover publications (2010)

  47. Doedel, E.: AUTO software for continuation and bifurcation problems in ordinary differential equations, ”http://indy.cs.concordia.ca/auto/

  48. Markellos, V.V., Black, W., Moran, P.E.: A grid search for families of periodic orbits in the restricted problem of three bodies. Cel. Mech. 9, 507–512 (1974)

    Article  MATH  Google Scholar 

  49. Roy, A.E., Ovenden, M.W.: On the occurrence of commensurable mean motions in the solar system. The mirror theorem. Mon. Not. R. Astron. Soc. 115(3), 296–309 (1955)

    Article  MATH  Google Scholar 

  50. Miele, A.: Theorem of image trajectories in the Earth-Moon space. Astronaut. Acta 6(51), 225–232 (1960)

    MATH  Google Scholar 

  51. Howell, K.C., Breakwell, J.V.: Three-Dimensional, Periodic, ‘Halo’ orbits. Celest. Mech. 32, 53–71 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  52. Marchand, B.G., Howell, K.C., Wilson, R.S.: Improved Corrections Process for Constrained Trajectory Design in the n-Body Problem. J. Spacecr. Rocket. 44, 884-894 (2007)

    Article  Google Scholar 

  53. Nakhjiri, N., Villac, B.: Automated stable region generation, detection, and representation for applications to mission design, Celestial Mechanics and Dynamical Astronomy, Published online 25 June 2015

  54. Nilsson, N., Intelligence, Artificial: A new synthesis san francisco: Morgan kaufmann (1998)

  55. Bürk, I.: Spectral Clustering. Bachelor thesis, Universität Stuttgart (2012). Available online on Matlab central (file ID File ID: #34412)

  56. Smith, P.H., Rizk, B., Kinney-Spano, E., Fellows, C., D’Aubigny, C., Merrill, C.: The OSIRIS-REx Camera Suite (OCAMS). 44th Lunar and Planetary Science Conference, The Woodlands, TX (2013)

  57. Scheeres, D.J.: Close Proximity Operations for Implementing Mitigation Strategies. 2004 Planetary Defense Conference: Protecting Earth from Asteroids, No. AIAA-2004-1445, Orange County, CA (2004)

  58. Pini, A.J.: Investigation of the Effect of Repeat Orbits on GRACE Gravity Recovery. Master’s thesis, The University of Texas at Austin (2012)

  59. Gunter, B.: Computational Methods and Processing Strategies for Estimating Earth’s Gravity Field. PhD thesis, The University of Texas at Austin (2004)

  60. Gaskell, R.W., Barnouin-Jha, O.S., Scheeres, D.J., Konopliv, A.S., Mukai, T., Abe, S., Saito, J., Ishiguro, M., Kubota, T., Hashimoto, T., Kawaguchi, J., Yoshikawa, M., Shirakawa, K., Kominato, T., Hirata, N., Demura, H.: Characterizing and navigating small bodies with imaging data. Meteorics Planet. Sci. 43, 1049–1061 (July 2008)

Download references

Acknowledgments

This research has been sponsored by the AMMOS technology development task. A portion of the research presented in this paper has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin F. Villac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villac, B.F., Anderson, R.L. & Pini, A.J. Computer Aided Ballistic Orbit Classification Around Small Bodies. J of Astronaut Sci 63, 175–205 (2016). https://doi.org/10.1007/s40295-016-0089-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-016-0089-x

Keywords

Navigation