Skip to main content
Log in

Assessing the Arrhythmogenic Potential of New Drugs: A Guide for the Pharmaceutical Physician

  • Review Article
  • Published:
Pharmaceutical Medicine Aims and scope Submit manuscript

Abstract

Cardiac toxicity due to the production of arrhythmias has previously been the most common reason for drugs to be withdrawn from the market or abandoned during development. The development of guidelines for the testing of the arrhythmogenic potential of drugs has led to testing that has been successful in preventing the development of drugs with cardiotoxic potential, but this has come at a high cost and attrition of a large proportion of new therapies due to a lack of sensitivity. New techniques are now being refined that allow the simultaneous assessment of a wide range of cardiac ion channels in cardiomyocytes derived from stem cells, which are cheaper to perform and allow a more comprehensive and sensitive analysis of the potential of drugs to induce serious arrhythmias. It is anticipated that these techniques will form the basis of new testing guidelines currently being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandenius CF, Steel D, Noor F, Meyer T, Heinzle E, Asp J, et al. Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. J Appl Toxicol. 2011;31(3):191–205.

    Article  CAS  PubMed  Google Scholar 

  2. Kannankeril PJ, Roden DM. Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol. 2007;22(1):39–43.

    Article  PubMed  Google Scholar 

  3. Fermini B, Fossa AA. The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov. 2003;2(6):439–47.

    Article  CAS  PubMed  Google Scholar 

  4. Belardinelli L, Antzelevitch C, Vos MA. Assessing predictors of drug-induced torsade de pointes. Trends Pharmacol Sci. 2003;24(12):619–25.

    Article  CAS  PubMed  Google Scholar 

  5. Antzelevitch C, Shimizu W. Cellular mechanisms underlying the long QT syndrome. Curr Opin Cardiol. 2002;17(1):43–51.

    Article  PubMed  Google Scholar 

  6. Darpo B, Garnett C, Benson CT, Keirns J, Leishman D, Malik M, et al. Cardiac Safety Research Consortium: can the thorough QT/QTc study be replaced by early QT assessment in routine clinical pharmacology studies? Scientific update and a research proposal for a path forward. Am Heart J. 2014;168(3):262–72.

    Article  PubMed  Google Scholar 

  7. US Department of Health and Human Services; US Food and Drug Administration. International Conference on Harmonisation; guidance on S7B Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals; availability. Notice. Fed Regist. 2005 Oct 20;70(202):61133–4.

  8. US Department of Health and Human Services; US Food and Drug Administration. International Conference on Harmonisation; guidance on E14 Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs; availability. Notice. Fed Regist. 2005 Oct 20;70(202):61134–5.

  9. De Ponte F. Pharmacological and regulatory aspects of QT prolongation. In: Vaz RJKT, editor. Antitargets: prediction and prevention of drug side effects. Weinheim: Wiley-VCH; 2008. p. 55–88.

    Google Scholar 

  10. Martin RL, McDermott JS, Salmen HJ, Palmatier J, Cox BF, Gintant GA. The utility of hERG and repolarization assays in evaluating delayed cardiac repolarization: influence of multi-channel block. J Cardiovasc Pharmacol. 2004;43(3):369–79.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng HC, Incardona J. Models of torsades de pointes: effects of FPL64176, DPI201106, dofetilide, and chromanol 293B in isolated rabbit and guinea pig hearts. J Pharmacol Toxicol Methods. 2009;60(2):174–84.

    Article  CAS  PubMed  Google Scholar 

  12. Pugsley MK, Authier S, Curtis MJ. Principles of safety pharmacology. Br J Pharmacol. 2008;154(7):1382–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Darpo B, Nebout T, Sager PT. Clinical evaluation of QT/QTc prolongation and proarrhythmic potential for nonantiarrhythmic drugs: the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use E14 guideline. J Clin Pharmacol. 2006;46(5):498–507.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann P, Warner B. Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J Pharmacol Toxicol Methods. 2006;53(2):87–105.

    Article  CAS  PubMed  Google Scholar 

  15. Darpo B. The thorough QT/QTc study 4 years after the implementation of the ICH E14 guidance. Br J Pharmacol. 2010;159(1):49–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gintant GA, Su Z, Martin RL, Cox BF. Utility of hERG assays as surrogate markers of delayed cardiac repolarization and QT safety. Toxicol Pathol. 2006;34(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  17. Pollard CE, Abi Gerges N, Bridgland-Taylor MH, Easter A, Hammond TG, Valentin JP. An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk. Br J Pharmacol. 2010;159(1):12–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gonzalez JE, Oades K, Leychkis Y, Harootunian A, Negulescu PA. Cell-based assays and instrumentation for screening ion-channel targets. Drug Discov Today. 1999;4(9):431–9.

    Article  CAS  PubMed  Google Scholar 

  19. Priest BT, Swensen AM, McManus OB. Automated electrophysiology in drug discovery. Curr Pharm Des. 2007;13(23):2325–37.

    Article  CAS  PubMed  Google Scholar 

  20. Di Veroli GY, Davies MR, Zhang H, Abi-Gerges N, Boyett MR. High-throughput screening of drug-binding dynamics to HERG improves early drug safety assessment. Am J Physiol Heart Circ Physiol. 2013;304(1):H104–17.

    Article  PubMed  Google Scholar 

  21. Rajamani S, Eckhardt LL, Valdivia CR, Klemens CA, Gillman BM, Anderson CL, et al. Drug-induced long QT syndrome: hERG K+ channel block and disruption of protein trafficking by fluoxetine and norfluoxetine. Br J Pharmacol. 2006;149(5):481–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Eckhardt LL, Rajamani S, January CT. Protein trafficking abnormalities: a new mechanism in drug-induced long QT syndrome. Br J Pharmacol. 2005;145(1):3–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hondeghem LM, Hoffmann P. Blinded test in isolated female rabbit heart reliably identifies action potential duration prolongation and proarrhythmic drugs: importance of triangulation, reverse use dependence, and instability. J Cardiovasc Pharmacol. 2003;41(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence CL, Pollard CE, Hammond TG, Valentin JP. In vitro models of proarrhythmia. Br J Pharmacol. 2008;154(7):1516–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Joshi A, Dimino T, Vohra Y, Cui C, Yan GX. Preclinical strategies to assess QT liability and torsadogenic potential of new drugs: the role of experimental models. J Electrocardiol. 2004;37(Suppl):7–14.

    Article  PubMed  Google Scholar 

  26. Lawrence CL, Pollard CE, Hammond TG, Valentin JP. Nonclinical proarrhythmia models: predicting Torsades de Pointes. J Pharmacol Toxicol Methods. 2005;52(1):46–59.

    Article  CAS  PubMed  Google Scholar 

  27. Antzelevitch C. Arrhythmogenic mechanisms of QT prolonging drugs: is QT prolongation really the problem? J Electrocardiol. 2004;37(Suppl):15–24.

    Article  PubMed  Google Scholar 

  28. Vos MA, Verduyn SC, Gorgels AP, Lipcsei GC, Wellens HJ. Reproducible induction of early after depolarizations and torsade de pointes arrhythmias by d-sotalol and pacing in dogs with chronic atrioventricular block. Circulation. 1995;91(3):864–72.

    Article  CAS  PubMed  Google Scholar 

  29. Chezalviel-Guilbert F, Davy JM, Poirier JM, Weissenburger J. Mexiletine antagonizes effects of sotalol on QT interval duration and its proarrhythmic effects in a canine model of torsade de pointes. J Am Coll Cardiol. 1995;26(3):787–92.

    Article  CAS  PubMed  Google Scholar 

  30. Chezalviel-Guilbert F, Weissenburger J, Davy JM, Guhennec C, Poirier JM, Cheymol G. Proarrhythmic effects of a quinidine analog in dogs with chronic A-V block. Fundam Clin Pharmacol. 1995;9(3):240–7.

    Article  CAS  PubMed  Google Scholar 

  31. Varkevisser R, Vos MA, Beekman JD, Tieland RG, VAN DER Heyden MA. AV-block and conduction slowing prevail over TdP arrhythmias in the methoxamine-sensitized pro-arrhythmic rabbit model. J Cardiovasc Electrophysiol. 2015;26(1):82–9.

    Article  PubMed  Google Scholar 

  32. Chi KR. Revolution dawning in cardiotoxicity testing. Nat Rev Drug Discov. 2013;12(8):565–7.

    Article  CAS  PubMed  Google Scholar 

  33. Vik T, Pollard C, Sager P. Early clinical development: evaluation of drug-induced torsades de pointes risk. Pharmacol Ther. 2008;119(2):210–4.

    Article  CAS  PubMed  Google Scholar 

  34. Bouvy JC, Koopmanschap MA, Shah RR, Schellekens H. The cost-effectiveness of drug regulation: the example of thorough QT/QTc studies. Clin Pharmacol Ther. 2012;91(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  35. Darpo B, Sarapa N, Garnett C, Benson C, Dota C, Ferber G, et al. The IQ-CSRC prospective clinical phase 1 study: “Can early QT assessment using exposure response analysis replace the thorough QT study?”. Ann Noninvasive Electrocardiol. 2014;19(1):70–81.

    Article  PubMed  Google Scholar 

  36. Sager PT, Gintant G, Turner JR, Pettit S, Stockbridge N. Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. Am Heart J. 2014;167(3):292–300.

    Article  PubMed  Google Scholar 

  37. Mordwinkin NM, Burridge PW, Wu JC. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res. 2013;6(1):22–30.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Farre C, Fertig N. HTS techniques for patch clamp-based ion channel screening—advances and economy. Expert Opin Drug Discov. 2012;7(6):515–24.

    Article  CAS  PubMed  Google Scholar 

  39. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010;363(15):1397–409.

    Article  CAS  PubMed  Google Scholar 

  40. Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med. 2012;4(130):130ra47.

    PubMed Central  PubMed  Google Scholar 

  41. Dale TJ, Townsend C, Hollands EC, Trezise DJ. Population patch clamp electrophysiology: a breakthrough technology for ion channel screening. Mol Biosyst. 2007;3(10):714–22.

    Article  CAS  PubMed  Google Scholar 

  42. Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, et al. Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation. 2013;128(11 Suppl 1):S3–13.

    Article  CAS  PubMed  Google Scholar 

  43. Mirams GR, Cui Y, Sher A, Fink M, Cooper J, Heath BM, et al. Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovasc Res. 2011;91(1):53–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Valentin JP, Hammond T. Safety and secondary pharmacology: successes, threats, challenges and opportunities. J Pharmacol Toxicol Methods. 2008;58(2):77–87.

    Article  CAS  PubMed  Google Scholar 

  45. Fletcher K, Shah RR, Thomas A, Tobin F, Rodriguez B, Mirams GR, et al. Novel approaches to assessing cardiac safety–proceedings of a workshop: regulators, industry and academia discuss the future of in silico cardiac modelling to predict the proarrhythmic safety of drugs. Drug Saf. 2011;34(5):439–43.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Mirams GR, Davies MR, Cui Y, Kohl P, Noble D. Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing. Br J Pharmacol. 2012;167(5):932–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Beattie KA, Luscombe C, Williams G, Munoz-Muriedas J, Gavaghan DJ, Cui Y, et al. Evaluation of an in silico cardiac safety assay: using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. J Pharmacol Toxicol Methods. 2013;68(1):88–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Turner JR, Panicker GK, Karnad DR, Cabell CH, Lieberman R, Kothari S. Cardiovascular safety monitoring during oncology drug development and therapy. Am J Ther. 2014;21(6):512–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Prasad Gunaruwan has no conflicts of interest to declare. Professor Laurence Howes has no conflicts of interest to declare. No funding was received for the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Guy Howes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunaruwan, P., Howes, L.G. Assessing the Arrhythmogenic Potential of New Drugs: A Guide for the Pharmaceutical Physician. Pharm Med 29, 11–16 (2015). https://doi.org/10.1007/s40290-015-0082-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40290-015-0082-x

Keywords

Navigation