Skip to main content
Log in

Stiffness as a Risk Factor for Achilles Tendon Injury in Running Athletes

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Overuse injuries are multifactorial resulting from cumulative loading. Therefore, clear differences between normal and at-risk individuals may not be present for individual risk factors. Using a holistic measure that incorporates many of the identified risk factors, focusing on multiple joint movement patterns may give better insight into overuse injuries. Lower body stiffness may provide such a measure.

Objective

To identify how risk factors for Achilles tendon injuries influence measures of lower body stiffness.

Methods

SPORTDiscus, Web of Science, CINAHL and PubMed were searched for Achilles tendon injury risk factors related to vertical, leg and joint stiffness in running athletes.

Results

Increased braking force and low surface stiffness, which were clearly associated with increased risk of Achilles tendon injuries, were also found to be associated with increased lower body stiffness. High arches and increased vertical and propulsive forces were protective for Achilles tendon injuries and were also associated with increased lower body stiffness. Risk factors for Achilles tendon injuries that had unclear associations were also investigated with the evidence trending towards an increase in leg stiffness and a decrease in ankle stiffness being detrimental to Achilles tendon health.

Conclusion

Few studies have investigated the link between lower body stiffness and Achilles injury. High stiffness is potentially associated with risk factors for Achilles tendon injuries although some of the evidence is controversial. Prospective injury studies are needed to confirm this relationship. Large amounts of high-intensity or high-speed work or running on soft surfaces such as sand may increase Achilles injury risk. Coaches and clinicians working with athletes with new or reoccurring injuries should consider training practices of the athlete and recommend reducing speed or sand running if loading is deemed to be excessive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vleck V, Garbutt G. Overuse injury prevalence and associated risk factors in male national squad and club triathletes training for the 1.5 km, 40 km, 10 km, triathlon. J Sports Sci. 1998;16(1):66.

    Google Scholar 

  2. Vleck VE, Garbutt G. Injury and training characteristics of male elite, development squad, and club triathletes. Int J Sports Med. 1998;19(1):38–42.

    Article  CAS  PubMed  Google Scholar 

  3. Lersch C, Grötsch A, Segesser B, et al. Influence of calcaneus angle and muscle forces on strain distribution in the human achilles tendon. Clin Biomech. 2012;27(9):955–61.

    Article  Google Scholar 

  4. Bojsen-Møller J, Hansen P, Aagaard P, et al. Differential displacement of the human soleus and medial gastrocnemius aponeuroses during isometric plantar flexor contractions in vivo. J Appl Physiol. 2004;97(5):1908–14.

    Article  PubMed  Google Scholar 

  5. Farris DJ, Trewartha G, Polly McGuigan M. Could intra-tendinous hyperthermia during running explain chronic injury of the human achilles tendon? J Biomech. 2011;44(5):822–6.

    Article  PubMed  Google Scholar 

  6. Wilson AM, Goodship AE. Exercise-induced hyperthermia as a possible mechanism for tendon degeneration. J Biomech. 1994;27(7):899–905.

    Article  CAS  PubMed  Google Scholar 

  7. Wyndow N, Cowan SM, Wrigley TV, et al. Neuromotor control of the lower limb in achilles tendinopathy: Implications for foot orthotic therapy. Sports Med. 2010;40(9):715–27.

    Article  PubMed  Google Scholar 

  8. Wren TAL, Lindsey DP, Beaupré GS, et al. Effects of creep and cyclic loading on the mechanical properties and failure of human achilles tendons. Ann Biomed Eng. 2003;31(6):710–7.

    Article  PubMed  Google Scholar 

  9. Ericson MO, Ekholm J, Svensson O, et al. The forces of ankle joint structures during ergometer cycling. Foot Ankle Int. 1985;6(3):135–42.

    Article  CAS  Google Scholar 

  10. Giddings VL, Beaupre GS, Whalen RT, et al. Calcaneal loading during walking and running. Med Sci Sports Exerc. 2000;32(3):627–34.

    Article  CAS  PubMed  Google Scholar 

  11. Gregor R, Komi P, Järvinen M. Achilles tendon forces during cycling. Int J Sports Med. 1987;8(S1):S9–14.

    Article  Google Scholar 

  12. Lorimer AV, Hume PA. Achilles tendon injury risk factors associated with running. Sports Med. 2014;44(10):1459–72.

    Article  PubMed  Google Scholar 

  13. Davids K, Button C, Bennett S. Physical constraints on coordination: Dynamical systems theory. Dynamics of skill acquisition: A constraints-led approach. Champaign: Human Kinetics; 2008. p. 29–53.

    Google Scholar 

  14. Davids K, Glazier P, Araujo D, et al. Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Med. 2003;33(4):245–60.

    Article  PubMed  Google Scholar 

  15. Hamill J, Palmer C, Van Emmerik RE. Coordinative variability and overuse injury. Sports Med Arthrosc Rehabil Ther Technol. 2012;4(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hamill J, van Emmerik RE, Heiderscheit BC, et al. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297–308.

    Article  CAS  Google Scholar 

  17. Debenham JR, Travers MJ, Gibson W, et al. Achilles tendinopathy alters stretch shortening cycle behaviour during a sub-maximal hopping task. J Sci Med Sport. 2016;19(1):69–73.

    Article  PubMed  Google Scholar 

  18. Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22(11–12):1217–27.

    Article  CAS  PubMed  Google Scholar 

  19. McMahon TA, Cheng GC. The mechanics of running: how does stiffness couple with speed? J Biomech. 1990;23(S1):65–78.

    Article  PubMed  Google Scholar 

  20. Seyfarth A, Geyer H, Günther M, et al. A movement criterion for running. J Biomech. 2002;35(5):649–55.

    Article  PubMed  Google Scholar 

  21. Duysens J, Van de Crommert HWAA. Neural control of locomotion part 1: the central pattern generator from cats to humans. Gait Posture. 1998;7(2):131–41.

    Article  PubMed  Google Scholar 

  22. Ijspeert AJ. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks. 2008;21(4):642–53.

    Article  PubMed  Google Scholar 

  23. Higgins JP, Green S, Collaboration C. Cochrane handbook for systematic reviews of interventions. Chichester: Wiley; 2008.

    Book  Google Scholar 

  24. Maher CG, Sherrington C, Herbert RD, et al. Reliability of the pedro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    PubMed  Google Scholar 

  25. Bizzini M, Childs JD, Piva SR, et al. Systematic review of the quality of randomized controlled trials for patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2003;33(1):4–20.

    Article  PubMed  Google Scholar 

  26. Dunlap WP, Cortina JM, Vaslow JB, et al. Meta-analysis of experiments with matched groups or repeated measures designs. Psychol Methods. 1996;1(2):170–7.

    Article  Google Scholar 

  27. Cavanagh PR, Kram R. Stride length in distance running: Velocity, body dimensions, and added mass effects. Med Sci Sports Exerc. 1989;21(4):467–79.

    Article  CAS  PubMed  Google Scholar 

  28. Bramble DM, Lieberman DE. Endurance running and the evolution of homo. Nature. 2004;432(7015):345–52.

    Article  CAS  PubMed  Google Scholar 

  29. Hopkins WG, Marshall SW, Batterham AM, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13.

    Article  PubMed  Google Scholar 

  30. Girard O, Millet G, Slawinski J, et al. Changes in running mechanics and spring-mass behaviour during a 5-km time trial. Int J Sports Med. 2013;34(9):832–40.

    Article  CAS  PubMed  Google Scholar 

  31. Rabita G, Couturier A, Lambertz D. Intrinsic ankle and hopping leg-spring stiffness in distance runners and aerobic gymnasts. Int J Sports Med. 2011;32(7):552–8.

    Article  CAS  PubMed  Google Scholar 

  32. Dutto DJ, Smith GA. Changes in spring-mass characteristics during treadmill running to exhaustion. Med Sci Sports Exerc. 2002;34(8):1324–31.

    Article  PubMed  Google Scholar 

  33. Girard O, Micallef J-P, Millet GP. Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol. 2011;111(1):125–34.

    Article  PubMed  Google Scholar 

  34. Ferris DP, Liang K, Farley CT. Runners adjust leg stiffness for their first step on a new running surface. J Biomech. 1999;32(8):787–94.

    Article  CAS  PubMed  Google Scholar 

  35. Ferris DP, Louie M, Farley CT. Running in the real world: adjusting leg stiffness for different surfaces. Proc Biol Sci. 1998;265(1400):989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kerdok AE, Biewener AA, McMahon TA, et al. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol. 2002;92(2):469–78.

    Article  PubMed  Google Scholar 

  37. Farley CT, Houdijk HHP, Van Strien C, et al. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol. 1998;85(3):1044–55.

    CAS  PubMed  Google Scholar 

  38. Ferris DP, Farley CT. Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol. 1997;82(1):15–22.

    CAS  PubMed  Google Scholar 

  39. Moritz CT, Farley CT. Passive dynamics change leg mechanics for an unexpected surface during human hopping. J Appl Physiol. 2004;97(4):1313–22.

    Article  PubMed  Google Scholar 

  40. Baltich J, Maurer C, Nigg BM. Increased vertical impact forces and altered running mechanics with softer midsole shoes. PLoS ONE. 2015;10(4):e0125196.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Williams DS III, Davis IM, Scholz JP, et al. High-arched runners exhibit increased leg stiffness compared to low-arched runners. Gait Posture. 2004;19(3):263–9.

    Article  PubMed  Google Scholar 

  42. Arampatzis A, Bruggemann GP, Metzler V. The effect of speed on leg stiffness and joint kinetics in human running. J Biomech. 1999;32(12):1349–53.

    Article  CAS  PubMed  Google Scholar 

  43. Hobara H, Inoue K, Gomi K, et al. Continuous change in spring-mass characteristics during a 400 m sprint. J Sci Med Sport. 2010;13(2):256–61.

    Article  PubMed  Google Scholar 

  44. Morin J-B, Jeannin T, Chevallier B, et al. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med. 2006;27(2):158–65.

    Article  PubMed  Google Scholar 

  45. Kuitunen S, Komi PV, Kyrolainen H. Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc. 2002;34(1):166–73.

    Article  PubMed  Google Scholar 

  46. Jacobs SJ, Berson BL. Injuries to runners: a study of entrants to a 10,000 meter race. Am J Sports Med. 1986;14(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  47. Hobara H, Kanosue K, Suzuki S. Changes in muscle activity with increase in leg stiffness during hopping. Neurosci Lett. 2007;418(1):55–9.

    Article  CAS  PubMed  Google Scholar 

  48. Morin JB, Samozino P, Zameziati K, et al. Effects of altered stride frequency and contact time on leg-spring behavior in human running. J Biomech. 2007;40(15):3341–8.

    Article  CAS  PubMed  Google Scholar 

  49. Hayes PR, Caplan N. Leg stiffness decreases during a run to exhaustion at the speed at VO 2max. Eur J Sport Sci. 2014;14(6):556–62.

    Article  PubMed  Google Scholar 

  50. Hobara H, Inoue K, Muraoka T, et al. Leg stiffness adjustment for a range of hopping frequencies in humans. J Biomech. 2010;43(3):506–11.

    Article  PubMed  Google Scholar 

  51. Hoffrén M, Ishikawa M, Rantalainen T, et al. Age-related muscle activation profiles and joint stiffness regulation in repetitive hopping. J Electromyogr Kinesiol. 2011;21(3):483–91.

    Article  PubMed  Google Scholar 

  52. Austin GP, Tiberio D, Garrett GE. Effect of frequency on human unipedal hopping. Percept Motor Skill. 2002;95(3):733–40.

    Article  Google Scholar 

  53. Farley CT, Gonzalez O. Leg stiffness and stride frequency in human running. J Biomech. 1996;29(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  54. Hunter JP, Marshall RN, McNair PJ. Interaction of step length and step rate during sprint running. Med Sci Sports Exerc. 2004;36(2):261–71.

    Article  PubMed  Google Scholar 

  55. Hobara H, Inoue K, Kanosue K. Effect of hopping frequency on bilateral differences in leg stiffness. J Appl Biomech. 2013;29(1):55–60.

    Article  PubMed  Google Scholar 

  56. Hobara H, Inoue K, Omuro K, et al. Determinant of leg stiffness during hopping is frequency-dependent. Eur J Appl Physiol. 2011;111(9):2195–201.

    Article  PubMed  Google Scholar 

  57. Demirbüken İ, Yurdalan SU, Savelberg H, et al. Gender specific strategies in demanding hopping conditions. J Sports Sci Med. 2009;8(2):265–70.

    PubMed  PubMed Central  Google Scholar 

  58. Hobara H, Kato E, Kobayashi Y, et al. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping. J Biomech. 2012;45(16):2750–4.

    Article  PubMed  Google Scholar 

  59. Granata KP, Padua DA, Wilson SE. Gender differences in active musculoskeletal stiffness. Part ii. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol. 2002;12(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  60. Padua DA, Arnold BL, Perrin DH, et al. Fatigue, vertical leg stiffness, and stiffness control strategies in males and females. J Athl Train. 2006;41(3):294–304.

    PubMed  PubMed Central  Google Scholar 

  61. Oliver JL, Smith PM. Neural control of leg stiffness during hopping in boys and men. J Electromyogr Kinesiol. 2010;20(5):973–9.

    Article  CAS  PubMed  Google Scholar 

  62. Hobara H, Kobayashi Y, Yoshida E, et al. Leg stiffness of older and younger individuals over a range of hopping frequencies. J Electromyogr Kinesiol. 2015;25(2):305–9.

    Article  PubMed  Google Scholar 

  63. Diss C, Gittoes MJ, Tong R, et al. Stance limb kinetics of older male athletes endurance running performance. Sports Biomech. 2015;24:1–10.

    Google Scholar 

  64. Divert C, Mornieux G, Freychat P, et al. Barefoot-shod running differences: shoe or mass effect? Int J Sports Med. 2008;29(6):512–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lussiana T, Hebert-Losier K, Millet GP, et al. Biomechanical changes during a 50-min run in different footwear and on various slopes. J Appl Biomech. 2016;32(1):40–9.

    Article  PubMed  Google Scholar 

  66. Bishop M, Fiolkowski P, Conrad B, et al. Athletic footwear, leg stiffness, and running kinematics. J Athl Train. 2006;41(4):387–92.

    PubMed  PubMed Central  Google Scholar 

  67. Chambon N, Delattre N, Gueguen N, et al. Is midsole thickness a key parameter for the running pattern? Gait Posture. 2014;40(1):58–63.

    Article  PubMed  Google Scholar 

  68. Logan S, Hunter I, Hopkins JT, et al. Ground reaction force differences between running shoes, racing flats, and distance spikes in runners. J Sports Sci Med. 2010;9(1):147–53.

    PubMed  PubMed Central  Google Scholar 

  69. Kuitunen S, Ogiso K, Komi P. Leg and joint stiffness in human hopping. Scand J Med Sci Sport. 2011;21(6):e159–67.

    Article  CAS  Google Scholar 

  70. Müller R, Grimmer S, Blickhan R. Running on uneven ground: leg adjustments by muscle pre-activation control. Hum Mov Sci. 2010;29(2):299–310.

    Article  PubMed  Google Scholar 

  71. Hobara H, Kimura K, Omuro K, et al. Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects. J Sci Med Sport. 2010;13(1):106–11.

    Article  PubMed  Google Scholar 

  72. Roschel H, Barroso R, Tricoli V, et al. Effects of strength training associated with whole-body vibration training on running economy and vertical stiffness. J Strength Cond Res. 2015;29(8):2215–20.

    Article  PubMed  Google Scholar 

  73. Choukou M-A, Laffaye G, Heugas-De Panafieu A-M. Sprinter’s motor signature does not change with fatigue. Eur J Appl Physiol. 2012;112(4):1557–68.

    Article  PubMed  Google Scholar 

  74. Degache F, Guex K, Fourchet F, et al. Changes in running mechanics and spring-mass behaviour induced by a 5-hour hilly running bout. J Sports Sci. 2013;31(3):299–304.

    Article  PubMed  Google Scholar 

  75. Hunter I, Smith GA. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. Eur J Appl Physiol. 2007;100(6):653–61.

    Article  PubMed  Google Scholar 

  76. Millet GY, Divert C, Banizette M, et al. Changes in running pattern due to fatigue and cognitive load in orienteering. J Sports Sci. 2010;28(2):153–60.

    Article  PubMed  Google Scholar 

  77. Morin J, Tomazin K, Edouard P, et al. Changes in running mechanics and spring–mass behavior induced by a mountain ultra-marathon race. J Biomech. 2011;44(6):1104–7.

    Article  CAS  PubMed  Google Scholar 

  78. Morin J-B, Samozino P, Millet GY. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. Med Sci Sports Exerc. 2011;43(5):829–36.

    Article  PubMed  Google Scholar 

  79. Morin J-B, Tomazin K, Samozino P, et al. High-intensity sprint fatigue does not alter constant-submaximal velocity running mechanics and spring-mass behavior. Eur J Appl Physiol. 2012;112(4):1419–28.

    Article  PubMed  Google Scholar 

  80. Degache F, Morin JB, Oehen L, et al. Running mechanics during the world’s most challenging mountain ultra-marathon. Int J Sports Physiol Perform. 2015. doi:10.1123/ijspp.2015-0238.

    PubMed  Google Scholar 

  81. Lazzer S, Taboga P, Salvadego D, et al. Factors affecting metabolic cost of transport during a multi-stage running race. J Exp Biol. 2014;217(Pt 5):787–95.

    Article  PubMed  Google Scholar 

  82. Le Meur Y, Thierry B, Rabita G, et al. Spring-mass behaviour during the run of an international triathlon competition. Int J Sports Med. 2013;34(8):748–55.

    Article  PubMed  Google Scholar 

  83. Rabita G, Couturier A, Dorel S, et al. Changes in spring-mass behavior and muscle activity during an exhaustive run at vo2max. J Biomech. 2013;46(12):2011–7.

    Article  PubMed  Google Scholar 

  84. Fourchet F, Girard O, Kelly L, et al. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners. J Sci Med Sport. 2015;18(2):199–203.

    Article  PubMed  Google Scholar 

  85. Giovanelli N, Taboga P, Rejc E, et al. Effects of an uphill marathon on running mechanics and lower limb muscles fatigue. Int J Sports Physiol Perform. 2015. doi:10.1123/ijspp.2014-0602.

    Google Scholar 

  86. Lazzer S, Salvadego D, Taboga P, et al. Effects of the etna uphill ultramarathon on energy cost and mechanics of running. Int J Sports Physiol Perform. 2016;10(2):238–47.

    Article  Google Scholar 

  87. Slawinski J, Heubert R, Quievre J, et al. Changes in spring-mass model parameters and energy cost during track running to exhaustion. J Strength Cond Res. 2008;22(3):930–6.

    Article  PubMed  Google Scholar 

  88. Le Meur Y, Dorel S, Rabita G, et al. Spring–mass behavior and electromyographic activity evolution during a cycle-run test to exhaustion in triathletes. J Electromyogr Kinesiol. 2012;22(6):835–44.

    Article  PubMed  Google Scholar 

  89. Hoang PD, Herbert RD, Todd G, et al. Passive mechanical properties of human gastrocnemius muscle–tendon units, muscle fascicles and tendons in vivo. J Exp Biol. 2007;210(23):4159–68.

    Article  CAS  PubMed  Google Scholar 

  90. Herbert RD, Clarke J, Kwah LK, et al. In vivo passive mechanical behaviour of muscle fascicles and tendons in human gastrocnemius muscle–tendon units. J Physiol. 2011;589(21):5257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Seynnes OR, Bojsen-Møller J, Albracht K, et al. Ultrasound-based testing of tendon mechanical properties: A critical evaluation. J Appl Physiol. 2014;12(36):20.

    Google Scholar 

  92. van Mechelen W. Running injuries. Sports Med. 1992;14(5):320–35.

    Article  PubMed  Google Scholar 

  93. Marti B, Vader JP, Minder CE, et al. On the epidemiology of running injuries the 1984 bern grand-prix study. Am J Sports Med. 1988;16(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  94. Di Caprio F, Buda R, Mosca M, et al. Foot and lower limb diseases in runners: assessment of risk factors. J Sports Sci Med. 2010;9(4):587–96.

    PubMed  PubMed Central  Google Scholar 

  95. Hoyt DF, Wickler SJ, Cogger EA. Time of contact and step length: the effect of limb length, running speed, load carrying and incline. J Exp Biol. 2000;203(2):221–7.

    CAS  PubMed  Google Scholar 

  96. Roberts TJ, Konow N. How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev. 2013;41(4):186–93.

    Article  PubMed  Google Scholar 

  97. Wyndow N, Cowan SM, Wrigley TV, et al. Triceps surae activation is altered in male runners with achilles tendinopathy. J Electromyogr Kinesiol. 2013;23(1):166–72.

    Article  CAS  PubMed  Google Scholar 

  98. Azevedo LB. Biomechanical variables associated with achilles tendinopathy in runners. Br J Sports Med. 2009;43(4):288–92.

    Article  CAS  PubMed  Google Scholar 

  99. Baur H, Divert C, Hirschmüller A, et al. Analysis of gait differences in healthy runners and runners with chronic achilles tendon complaints. Isokinet Exerc Sci. 2004;12(2):111–6.

    Google Scholar 

  100. Baur H, Muller S, Hirschmuller A, et al. Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion achilles tendinopathy and healthy individuals. J Electromyogr Kinesiol. 2011;21(3):499–505.

    Article  PubMed  Google Scholar 

  101. Taunton JE, Ryan MB, Clement DB, et al. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Padua DA, Carcia CR, Arnold BL, et al. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Motor Behav. 2005;37(2):111–25.

    Article  Google Scholar 

  103. Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol. 2006;100(6):2048–56.

    Article  PubMed  Google Scholar 

  104. Hamill J, Russell EM, Gruber AH, et al. Impact characteristics in shod and barefoot running. Footwear Sci. 2011;3(1):33–40.

    Article  Google Scholar 

  105. Perry SD, Lafortune MA. Influences of inversion/eversion of the foot upon impact loading during locomotion. Clin Biomech. 1995;10(5):253–7.

    Article  Google Scholar 

  106. Nigg BM. The role of impact forces and foot pronation: a new paradigm. Clin J Sports Med. 2001;11(1):2–9.

    Article  CAS  Google Scholar 

  107. Millet GP, Vleck VE. Physiological and biomechanical adaptations to the cycle to run transition in olympic triathlon: review and practical recommendations for training. Br J Sports Med. 2000;34(5):384–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bonacci J, Green D, Saunders PU, et al. Change in running kinematics after cycling are related to alterations in running economy in triathletes. J Sci Med Sport. 2010;13(4):460–4.

    Article  PubMed  Google Scholar 

  109. Millet GP, Millet GY, Hofmann MD, et al. Alterations in running economy and mechanics after maximal cycling in triathletes: influence of performance level. Int J Sports Med. 2000;21(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  110. Bentley DJ. The physiological responses to running after cycling in elite junior and senior triathletes. Int J Sports Med. 2004;25(3):191–7.

    Article  PubMed  Google Scholar 

  111. Rendos NK, Harrison BC, Dicharry JM, et al. Sagittal plane kinematics during the transition run in triathletes. J Sci Med Sport. 2013;16(3):259–65.

    Article  PubMed  Google Scholar 

  112. Chapman AR, Hodges PW, Briggs AM, et al. Neuromuscular control and exercise-related leg pain in triathletes. Med Sci Sports Exerc. 2010;42(2):233–43.

    Article  PubMed  Google Scholar 

  113. Chapman AR, Vicenzino B, Blanch P, et al. Does cycling effect motor coordination of the leg during running in elite triathletes? J Sci Med Sport. 2008;11(4):371–80.

    Article  PubMed  Google Scholar 

  114. Heiden T, Burnett A. Triathlon: the effect of cycling on muscle activation in the running leg of an olympic distance triathlon. Sports Biomech. 2003;2(1):35–49.

    Article  PubMed  Google Scholar 

  115. Lepers R, Bigard AX, Diard J-P, et al. Posture control after prolonged exercise. Eur J Appl Physiol Occup Physiol. 1997;76(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  116. Sainburg RL, Poizner H, Ghez C. Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol. 1993;70(5):2136–47.

    CAS  PubMed  Google Scholar 

  117. McCole SD, Calney K, Conte JC, et al. Energy expenditure during bicycling. J Appl Physiol. 1990;68(2):748–53.

    CAS  PubMed  Google Scholar 

  118. Butler RJ, Crowell HP III, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511–7.

    Article  Google Scholar 

  119. Mahieu NN, Witvrouw E, Stevens V, et al. Intrinsic risk factors for the development of achilles tendon overuse injury. A prospective study. Am J Sports Med. 2006;34(2):226–35.

    Article  PubMed  Google Scholar 

  120. Maquirriain J. Leg stiffness changes in athletes with achilles tendinopathy. Int J Sports Med. 2012;33(7):567–71.

    Article  CAS  PubMed  Google Scholar 

  121. Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the achilles tendon. J Appl Physiol. 2010;108(3):670–5.

    Article  PubMed  Google Scholar 

  122. Lipfert SW, Günther M, Renjewski D, et al. A model-experiment comparison of system dynamics for human walking and running. J Theor Biol. 2012;292:11–7.

    Article  PubMed  Google Scholar 

  123. Viale F, Dalleau G, Freychat P, et al. Leg stiffness and foot orientations during running. Foot Ankle Int. 1998;19(11):761–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Anna Lorimer reviewed the literature as the basis for her later PhD biomechanical studies on the effects of lower limb stiffness on running mechanics and injury. Patria Hume as Anna Lorimer’s PhD supervisor with experience in sports injury biomechanics, reviewed the identified literature and edited the manuscript. Both authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna V. Lorimer.

Ethics declarations

Funding

This review was funded by the Auckland University of Technology. Anna Lorimer was funded by a Vice Chandellor’s PhD scholarship.

Conflicts of interest

Anna Lorimer and Patria Hume declare they have no conflicts of interest relevant to the content of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorimer, A.V., Hume, P.A. Stiffness as a Risk Factor for Achilles Tendon Injury in Running Athletes. Sports Med 46, 1921–1938 (2016). https://doi.org/10.1007/s40279-016-0526-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0526-9

Keywords

Navigation