Skip to main content
Log in

The Effect of Exercise Training on the Energetic Cost of Cycling

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background and Objective

The energetic cost of cycling (CE) is a major contributor to cycling performance but whether CE can be improved by exercise intervention remains uncertain. Here, we sought to systematically review and determine the effect of exercise training on CE in healthy humans.

Methods

MEDLINE, Scopus, and Web of Science were searched since their inceptions up until December 2014 for articles assessing the effect of exercise training in healthy subjects on CE, as determined by cycling economy or efficiency. Meta-analyses were performed to determine the standardized mean difference (SMD) in CE between post- and pre-training measurements. Subgroup and meta-regression analyses were used to evaluate potential moderating/confounding factors.

Results

Fifty-one studies were included after systematic review, comprising a total of 531 healthy subjects (mean age = 20–66 years). Exercise interventions primarily consisted of endurance and/or strength training ranging from 4 to 34 weeks of duration. After data pooling, the meta-analysis revealed that CE was improved with strength training alone or along with endurance training (n = 16, SMD = −0.50, P < 0.0001) but not with endurance training alone (n = 33, SMD = −0.18, P = 0.08). In further subgroup analyses, endurance training alone was effective in improving CE in previously untrained (n = 20, SMD = −0.21, P = 0.04) but not in trained (n = 6, SMD = 0.09, P = 0.75) subjects. The SMD in CE was associated with the duration of training (n = 51, B = −0.03, P = 0.0002).

Conclusion

The current meta-analysis provides evidence that CE is improved by exercise training, particularly when strength training or untrained subjects are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang E, Naess MS, Hoff J, Albert TL, Quan P, Richardson RS, et al. Exercise-training-induced changes in metabolic capacity with age: the role of central cardiovascular plasticity. Age. 2014;36(2):665–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol. 2013;591(Pt 3):657–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Zoladz JA, Szkutnik Z, Majerczak J, Grandys M, Duda K, Grassi B. Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise. Eur J Appl Physiol. 2012;112(12):4151–61.

    Article  PubMed  Google Scholar 

  4. Porcelli S, Marzorati M, Pugliese L, Adamo S, Gondin J, Bottinelli R, et al. Lack of functional effects of neuromuscular electrical stimulation on skeletal muscle oxidative metabolism in healthy humans. J Appl Physiol (1985). 2012;113(7):1101–9.

    Article  Google Scholar 

  5. Ichinose T, Nomura S, Someya Y, Akimoto S, Tachiyashiki K, Imaizumi K. Effect of endurance training supplemented with green tea extract on substrate metabolism during exercise in humans. Scand J Med Sci Sports. 2011;21(4):598–605.

    Article  CAS  PubMed  Google Scholar 

  6. Majerczak J, Karasinski J, Zoladz JA. Training induced decrease in oxygen cost of cycling is accompanied by down-regulation of SERCA expression in human vastus lateralis muscle. J Physiol Pharmacol. 2008;59(3):589–602.

    CAS  PubMed  Google Scholar 

  7. Van Zant RS, Bouillon LE. Strength cycle training: effects on muscular strength and aerobic conditioning. J Strength Cond Res. 2007;21(1):178–82.

    Article  PubMed  Google Scholar 

  8. Hansen EA, Raastad T, Hallen J. Strength training reduces freely chosen pedal rate during submaximal cycling. Eur J Appl Physiol. 2007;101(4):419–26.

    Article  PubMed  Google Scholar 

  9. Jacobs KA, Krauss RM, Fattor JA, Horning MA, Friedlander AL, Bauer TA, et al. Endurance training has little effect on active muscle free fatty acid, lipoprotein cholesterol, or triglyceride net balances. Am J Physiol Endocrinol Metab. 2006;291(3):E656–65.

    Article  CAS  PubMed  Google Scholar 

  10. Dressendorfer RH, Petersen SR, Lovshin SEM, Hannon JL, Lee SF, Bell GJ. Performance enhancement with maintenance of resting immune status after intensified cycle training. Clin J Sport Med. 2002;12(5):301–7.

    Article  PubMed  Google Scholar 

  11. Proctor DN, Miller JD, Dietz NM, Minson CT, Joyner MJ. Reduced submaximal leg blood flow after high-intensity aerobic training. J Appl Physiol (1985). 2001;91(6):2619–27.

    CAS  Google Scholar 

  12. Costes F, Prieur F, Feasson L, Geyssant A, Barthelemy JC, Denis C. Influence of training on NIRS muscle oxygen saturation during submaximal exercise. Med Sci Sports Exerc. 2001;33(9):1484–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bergman BC, Butterfield GE, Wolfel EE, Casazza GA, Lopaschuk GD, Brooks GA. Evaluation of exercise and training on muscle lipid metabolism. Am J Physiol. 1999;276(1 Pt 1):E106–17.

    CAS  PubMed  Google Scholar 

  14. Beere PA, Russell SD, Morey MC, Kitzman DW, Higginbotham MB. Aerobic exercise training can reverse age-related peripheral circulatory changes in healthy older men. Circulation. 1999;100(10):1085–94.

    Article  CAS  PubMed  Google Scholar 

  15. Gissane C, Corrigan DL, White JA. Gross efficiency responses to exercise conditioning in adult males of various ages. J Sports Sci. 1991;9(4):383–91.

    Article  CAS  PubMed  Google Scholar 

  16. Gardner AW, Poehlman ET, Corrigan DL. Effect of endurance training on gross energy expenditure during exercise. Hum Biol. 1989;61(4):559–69.

    CAS  PubMed  Google Scholar 

  17. Hagberg JM, Hickson RC, Ehsani AA, Holloszy JO. Faster adjustment to and recovery from submaximal exercise in the trained state. J Appl Physiol Respir Environ Exerc Physiol. 1980;48(2):218–24.

    CAS  PubMed  Google Scholar 

  18. Ekblom B, Astrand PO, Saltin B, Stenberg J, Wallstrom B. Effect of training on circulatory response to exercise. J Appl Physiol. 1968;24(4):518–28.

    CAS  PubMed  Google Scholar 

  19. Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992;24(7):782–8.

    Article  CAS  PubMed  Google Scholar 

  20. Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):35–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Grassi B, Rossiter HB, Zoladz JA. Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exerc Sport Sci Rev. 2015;43(2):75–83.

    Article  PubMed  Google Scholar 

  22. Majerczak J, Korostynski M, Nieckarz Z, Szkutnik Z, Duda K, Zoladz JA. Endurance training decreases the non-linearity in the oxygen uptake-power output relationship in humans. Exp Physiol. 2012;97(3):386–99.

    Article  CAS  PubMed  Google Scholar 

  23. Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):2046–62.

    Article  PubMed  Google Scholar 

  24. Beattie K, Kenny IC, Lyons M, Carson BP. The effect of strength training on performance in endurance athletes. Sports Med. 2014;44(6):845–65.

    Article  PubMed  Google Scholar 

  25. Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol. 2006;571(Pt 3):669–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Moore IS, Jones AM, Dixon SJ. Mechanisms for improved running economy in beginner runners. Med Sci Sports Exerc. 2012;44(9):1756–63.

    Article  PubMed  Google Scholar 

  27. Williams KR, Cavanagh PR. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol (1985). 1987;63(3):1236–45.

    CAS  Google Scholar 

  28. Williams KR. The relationship between mechanical and physiological energy estimates. Med Sci Sports Exerc. 1985;17(3):317–25.

    Article  CAS  PubMed  Google Scholar 

  29. Lundby C, Robach P. Performance enhancement: what are the physiological limits? J Physiol. 2015;30(4):282–92.

    Article  CAS  Google Scholar 

  30. Barnes KR, Kilding AE. Strategies to improve running economy. Sports Med. 2015;45(1):37–56.

    Article  PubMed  Google Scholar 

  31. Hopker J, Passfield L, Coleman D, Jobson S, Edwards L, Carter H. The effects of training on gross efficiency in cycling: a review. Int J Sports Med. 2009;30(12):845–50.

    Article  CAS  PubMed  Google Scholar 

  32. Ettema G, Loras HW. Efficiency in cycling: a review. Eur J Appl Physiol. 2009;106(1):1–14.

    Article  PubMed  Google Scholar 

  33. Ronnestad BR, Hansen EA, Raastad T. Strength training affects tendon cross-sectional area and freely chosen cadence differently in noncyclists and well-trained cyclists. J Strength Cond Res. 2012;26(1):158–66.

    Article  PubMed  Google Scholar 

  34. Dhamrait SS, Williams AG, Day SH, Skipworth J, Payne JR, World M, et al. Variation in the uncoupling protein 2 and 3 genes and human performance. J Appl Physiol. 2012;112(7):1122–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Aagaard P, Andersen JL, Bennekou M, Larsson B, Olesen JL, Crameri R, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports. 2011;21(6):e298–307.

    Article  CAS  PubMed  Google Scholar 

  36. Sunde A, Storen O, Bjerkaas M, Larsen MH, Hoff J, Helgerud J. Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res. 2010;24(8):2157–65.

    Article  PubMed  Google Scholar 

  37. Lecoultre V, Boss A, Tappy L, Borrani F, Tran C, Schneiter P, et al. Training in hypoxia fails to further enhance endurance performance and lactate clearance in well-trained men and impairs glucose metabolism during prolonged exercise. Exp Physiol. 2010;95(2):315–30.

    Article  CAS  PubMed  Google Scholar 

  38. Paton CD, Hopkins WG, Cook C. Effects of low- vs. high-cadence interval training on cycling performance. J Strength Cond Res. 2009;23(6):1758–63.

    Article  PubMed  Google Scholar 

  39. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586(1):151–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Roels B, Millet GP, Marcoux CJ, Coste O, Bentley DJ, Candau RB. Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc. 2005;37(1):138–46.

    Article  PubMed  Google Scholar 

  41. Prieur F, Benoit H, Busso T, Castells J, Denis C. Effect of endurance training on the VO2-work rate relationship in normoxia and hypoxia. Med Sci Sports Exerc. 2005;37(4):664–9.

    Article  PubMed  Google Scholar 

  42. Paton CD, Hopkins WG. Combining explosive and high-resistance training improves performance in competitive cyclists. J Strength Cond Res. 2005;19(4):826–30.

    PubMed  Google Scholar 

  43. Loveless DJ, Weber CL, Haseler LJ, Schneider DA. Maximal leg-strength training improves cycling economy in previously untrained men. Med Sci Sports Exerc. 2005;37(7):1231–6.

    Article  PubMed  Google Scholar 

  44. Hintzy F, Mourot L, Perrey S, Tordi N. Effect of endurance training on different mechanical efficiency indices during submaximal cycling in subjects unaccustomed to cycling. Can J Appl Physiol. 2005;30(5):520–8.

    Article  PubMed  Google Scholar 

  45. Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance exercise in men and women after endurance training. Am J Physiol Endocrinol Metab. 2001;280(6):E898–907.

    CAS  PubMed  Google Scholar 

  46. Friedlander AL, Casazza GA, Horning MA, Huie MJ, Piacentini MF, Trimmer JK, et al. Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J Appl Physiol (1985). 1998;85(3):1175–86.

    CAS  Google Scholar 

  47. Friedlander AL, Casazza GA, Horning MA, Huie MJ, Brooks GA. Training-induced alterations of glucose flux in men. J Appl Physiol (1985). 1997;82(4):1360–9.

    CAS  Google Scholar 

  48. Clausen JP, Klausen K, Rasmussen B, Trap-Jensen J. Central and peripheral circulatory changes after training of the arms or legs. Am J Physiol. 1973;225(3):675–82.

    CAS  PubMed  Google Scholar 

  49. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

    Article  CAS  PubMed  Google Scholar 

  50. Ross LE, Grigoriadis S, Mamisashvili L, Koren G, Steiner M, Dennis CL, et al. Quality assessment of observational studies in psychiatry: an example from perinatal psychiatric research. Int J Methods Psychiatr Res. 2011;20(4):224–34.

    Article  CAS  PubMed  Google Scholar 

  51. Montero D, Diaz-Cañestro C, Lundby C. Endurance training and VO2max: role of maximal cardiac output and oxygen extraction. Med Sci Sports Exerc. 2015 (Epub ahead of print).

  52. Higgins JPT, Green S, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from http://www.cochrane-handbook.org. Accessed 15 Dec 2014.

  53. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  54. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. In: Hillsdale N, editor. Hillsdale: Lawrence Erlbaum Associates Publishers; 1988.

  55. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. ACSM. ACSM’s guidelines for exercise testing and prescription. Hagerstown: Lippincott Raven; 2009.

    Google Scholar 

  57. Moseley L, Achten J, Martin JC, Jeukendrup AE. No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med. 2004;25(5):374–9.

    Article  CAS  PubMed  Google Scholar 

  58. Olds T, Norton K, Craig N, Olive S, Lowe E. The limits of the possible: models of power supply and demand in cycling. Aust J Sci Med Sport. 1995;27(2):29–33.

    CAS  PubMed  Google Scholar 

  59. Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol (1985). 1999;86(5):1527–33.

    CAS  Google Scholar 

  60. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988;20(5 Suppl):S135–45.

    Article  CAS  PubMed  Google Scholar 

  61. Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58(3):115–30.

    CAS  PubMed  Google Scholar 

  62. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2002;34(2):364–80.

    Article  PubMed  Google Scholar 

  63. Vissing K, Brink M, Lonbro S, Sorensen H, Overgaard K, Danborg K, et al. Muscle adaptations to plyometric vs. resistance training in untrained young men. J Strength Cond Res. 2008;22(6):1799–810.

    Article  PubMed  Google Scholar 

  64. Marsh AP, Martin PE, Foley KO. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Med Sci Sports Exerc. 2000;32(9):1630–4.

    Article  CAS  PubMed  Google Scholar 

  65. Nickleberry BL Jr, Brooks GA. No effect of cycling experience on leg cycle ergometer efficiency. Med Sci Sports Exerc. 1996;28(11):1396–401.

    Article  PubMed  Google Scholar 

  66. Jones AM. The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coaching. 2006;1:101–16.

    Article  Google Scholar 

  67. Coyle EF. Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol (1985). 2005;98(6):2191–6.

    Article  Google Scholar 

  68. Bonne TC, Doucende G, Fluck D, Jacobs RA, Nordsborg NB, Robach P, et al. Phlebotomy eliminates the maximal cardiac output response to six weeks of exercise training. Am J Physiol Regul Integr Comp Physiol. 2014;306(10):R752–60.

    Article  CAS  PubMed  Google Scholar 

  69. Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, et al. Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol (1985). 1985;59(2):320–7.

    CAS  PubMed  Google Scholar 

  70. Kalliokoski KK, Oikonen V, Takala TO, Sipila H, Knuuti J, Nuutila P. Enhanced oxygen extraction and reduced flow heterogeneity in exercising muscle in endurance-trained men. Am J Physiol Endocrinol Metab. 2001;280(6):E1015–21.

    CAS  PubMed  Google Scholar 

  71. Carrick-Ranson G, Hastings JL, Bhella PS, Fujimoto N, Shibata S, Palmer MD, et al. The effect of lifelong exercise dose on cardiovascular function during exercise. J Appl Physiol (1985). 2014;116(7):736–45.

    Article  PubMed Central  CAS  Google Scholar 

  72. Fleg JL, Schulman SP, O’Connor FC, Gerstenblith G, Becker LC, Fortney S, et al. Cardiovascular responses to exhaustive upright cycle exercise in highly trained older men. J Appl Physiol (1985). 1994;77(3):1500–6.

    CAS  Google Scholar 

  73. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–63.

    Article  PubMed  Google Scholar 

  74. Jacobs RA, Lundby C. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol (1985). 2013;114(3):344–50.

    Article  CAS  Google Scholar 

  75. Jacobs RA, Fluck D, Bonne TC, Burgi S, Christensen PM, Toigo M, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol (1985). 2013;115(6):785–93.

    Article  Google Scholar 

  76. Baker WL, White CM, Cappelleri JC, Kluger J, Coleman CI. Understanding heterogeneity in meta-analysis: the role of meta-regression. Int J Clin Pract. 2009;63(10):1426–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Montero.

Ethics declarations

Conflict of interest

David Montero and Carsten Lundby declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montero, D., Lundby, C. The Effect of Exercise Training on the Energetic Cost of Cycling. Sports Med 45, 1603–1618 (2015). https://doi.org/10.1007/s40279-015-0380-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-015-0380-1

Keywords

Navigation