Skip to main content

Advertisement

Log in

McArdle Disease: A Unique Study Model in Sports Medicine

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

McArdle disease is arguably the paradigm of exercise intolerance in humans. This disorder is caused by inherited deficiency of myophosphorylase, the enzyme isoform that initiates glycogen breakdown in skeletal muscles. Because patients are unable to obtain energy from their muscle glycogen stores, this disease provides an interesting model of study for exercise physiologists, allowing insight to be gained into the understanding of glycogen-dependent muscle functions. Of special interest in the field of muscle physiology and sports medicine are also some specific (if not unique) characteristics of this disorder, such as the so-called ‘second wind’ phenomenon, the frequent exercise-induced rhabdomyolysis and myoglobinuria episodes suffered by patients (with muscle damage also occurring under basal conditions), or the early appearance of fatigue and contractures, among others. In this article we review the main pathophysiological features of this disorder leading to exercise intolerance as well as the currently available therapeutic possibilities. Patients have been traditionally advised by clinicians to refrain from exercise, yet sports medicine and careful exercise prescription are their best allies at present because no effective enzyme replacement therapy is expected to be available in the near future. As of today, although unable to restore myophosphorylase deficiency, the ‘simple’ use of exercise as therapy seems probably more promising and practical for patients than more ‘complex’ medical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10:20.

    Google Scholar 

  2. Lucia A, Ruiz JR, Santalla A, et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry. 2012;83(3):322–8.

    PubMed  Google Scholar 

  3. Bruno C, Cassandrini D, Martinuzzi A, et al. McArdle disease: the mutation spectrum of PYGM in a large Italian cohort. Hum Mut. 2006;27(7):718.

    PubMed  Google Scholar 

  4. Quinlivan R, Buckley J, James M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81(11):1182–8.

    PubMed  CAS  Google Scholar 

  5. Dubowith VSC, Oldfors A. Muscle biopsy; practical approach. 4th ed. New York: Elsevier; 2013.

    Google Scholar 

  6. Di Mauro S. Muscle glycogenoses: an overview. Acta Myol. 2007;26(1):35–41.

    PubMed  PubMed Central  Google Scholar 

  7. Lucia A, Nogales-Gadea G, Perez M, et al. McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol. 2008;4(10):568–77.

    PubMed  Google Scholar 

  8. Lucia AQR, Wakelin A, Martín MA, et al. The ‘McArdle paradox’: exercise is a good advice for the exercise intolerant. Br J Sports Med. 2013;47(12):2.

    Google Scholar 

  9. Haller RG, Vissing J. Spontaneous, “second wind” and glucose-induced second “second wind” in McArdle disease: oxidative mechanisms. Arch Neurol. 2002;59(9):1395–402.

    PubMed  Google Scholar 

  10. Martin MA, Rubio JC, Buchbinder J, et al. Molecular heterogeneity of myophosphorylase deficiency (McArdle’s disease): a genotype-phenotype correlation study. Ann Neurol. 2001;50(5):574–81.

    PubMed  CAS  Google Scholar 

  11. Di Mauro SHA, Tsujino S. Nonlysosomal glycogenoses. In: Engel AGFAC, editor. Myology. New York: McGraw-Hill; 2004. p. 1535–58.

    Google Scholar 

  12. Vissing J, Haller RG. A diagnostic cycle test for McArdle’s disease. Ann Neurol. 2003;54(4):539–42.

    PubMed  Google Scholar 

  13. Braakhekke JP, de Bruin MI, Stegeman DF, et al. The second wind phenomenon in McArdle’s disease. Brain. 1986;109(Pt 6):1087–101.

    PubMed  Google Scholar 

  14. Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med. 2003;349(26):2503–9.

    PubMed  CAS  Google Scholar 

  15. Nadaj-Pakleza AA, Vincitorio CM, Laforet P, et al. Permanent muscle weakness in McArdle disease. Muscle Nerve. 2009;40(3):350–7.

    PubMed  Google Scholar 

  16. Wolfe GI, Baker NS, Haller RG, et al. McArdle’s disease presenting with asymmetric, late-onset arm weakness. Muscle Nerve. 2000;23(4):641–5.

    PubMed  CAS  Google Scholar 

  17. Hultman E. Physiological role of muscle glycogen in man, with special reference to exercise. Circ Res. 1967;10:I99–114.

    Google Scholar 

  18. Hargreaves M. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol. 2000;27(3):225–8.

    PubMed  CAS  Google Scholar 

  19. Pernow B, Saltin B. Availability of substrates and capacity for prolonged heavy exercise in man. J Appl Physiol. 1971;31(3):416–22.

    PubMed  CAS  Google Scholar 

  20. Bergstrom J, Hermansen L, Hultman E, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.

    PubMed  CAS  Google Scholar 

  21. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71(2):129–39.

    PubMed  CAS  Google Scholar 

  22. Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol. 1995;78(1):288–92.

    PubMed  CAS  Google Scholar 

  23. Bangsbo J, Graham TE, Kiens B, et al. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol. 1992;451:205–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Gollnick PD, Piehl K, Saubert CWT, et al. Diet, exercise, and glycogen changes in human muscle fibers. J Appl Physiol. 1972;33(4):421–5.

    PubMed  CAS  Google Scholar 

  25. Chin ER, Allen DG. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol. 1997;498(Pt 1):17–29.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Duhamel TA, Perco JG, Green HJ. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1100–10.

    PubMed  CAS  Google Scholar 

  27. Ortenblad N, Nielsen J, Saltin B, et al. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(Pt 3):711–25.

    PubMed  PubMed Central  Google Scholar 

  28. Ortenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591(18):4405–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Dutka TL, Lamb GD. Na+–K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis. Am J Physiol Cell Physiol. 2007;293(3):C967–77.

    PubMed  CAS  Google Scholar 

  30. James JH, Wagner KR, King JK, et al. Stimulation of both aerobic glycolysis and Na(+)–K(+)–ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol. 1999;277(1 Pt 1):E176–86.

    PubMed  CAS  Google Scholar 

  31. Friden J, Seger J, Ekblom B. Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiol Scand. 1989;135(3):381–91.

    PubMed  CAS  Google Scholar 

  32. Marchand I, Chorneyko K, Tarnopolsky M, et al. Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol. 2002;93(5):1598–607.

    PubMed  CAS  Google Scholar 

  33. Wanson JC, Drochmans P. Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen beta-particles isolated by the precipitation–centrifugation method. J Cell Biol. 1968;38(1):130–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Nielsen J, Suetta C, Hvid LG, et al. Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men. Am J Physiol Endocrinol Metab. 2010;299(6):E1053–60.

    PubMed  CAS  Google Scholar 

  35. Graham TE, Yuan Z, Hill AK, et al. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol. 2010;199(4):489–98.

    CAS  Google Scholar 

  36. Wanson JC, Drochmans P. Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. J Cell Biol. 1972;54(2):206–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Nielsen J, Ortenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38(2):91–9.

    PubMed  CAS  Google Scholar 

  38. Nielsen JCA, Ortenblad N, Westerblad H. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. J Physiol. 2014;592(9):2003–12.

    PubMed  CAS  Google Scholar 

  39. Nielsen J, Schroder HD, Rix CG, et al. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J Physiol. 2009;587(Pt 14):3679–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Entman ML, Keslensky SS, Chu A, et al. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. J Biol Chem. 1980;255(13):6245–52.

    PubMed  CAS  Google Scholar 

  41. Xu KY, Becker LC. Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesticles. J Histochem Cytochem. 1998;46(4):419–27.

    PubMed  CAS  Google Scholar 

  42. Hirata Y, Atsumi M, Ohizumi Y, et al. Mastoparan binds to glycogen phosphorylase to regulate sarcoplasmic reticular Ca2+ release in skeletal muscle. Biochem J. 2003;371(Pt 1):81–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Krishnamoorthy N, Santosh V, Yasha TC, et al. Glycogen storage disease type V (Mc Ardle’s disease): a report on three cases. Neurol India. 2011;59(6):884–6.

    PubMed  Google Scholar 

  44. Tachi N, Sasaki K, Tachi M, et al. Histochemical and biochemical studies in a patient with myophosphorylase deficiency. Eur Neurol. 1990;30(1):52–5.

    PubMed  CAS  Google Scholar 

  45. De Stefano N, Argov Z, Matthews PM, et al. Impairment of muscle mitochondrial oxidative metabolism in McArdles’s disease. Muscle Nerve. 1996;19(6):764–9.

    PubMed  Google Scholar 

  46. Haller RG, Clausen T, Vissing J. Reduced levels of skeletal muscle Na+K+–ATPase in McArdle disease. Neurology. 1998;50(1):37–40.

    PubMed  CAS  Google Scholar 

  47. Lewis SF, Haller RG. The pathophysiology of McArdle’s disease: clues to regulation in exercise and fatigue. J Appl Physiol. 1986;61(2):391–401.

    PubMed  CAS  Google Scholar 

  48. Zange J, Grehl T, Disselhorst-Klug C, et al. Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle’s disease: a noninvasive 31P-MRS and EMG study. Muscle Nerve. 2003;27(6):728–36.

    PubMed  CAS  Google Scholar 

  49. Haller RG, Lewis SF, Cook JD, et al. Hyperkinetic circulation during exercise in neuromuscular disease. Neurology. 1983;33(10):1283–7.

    PubMed  CAS  Google Scholar 

  50. Vissing J, Vissing SF, MacLean DA, et al. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies. J Clin Invest. 1998;101:1654–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Rae DE, Noakes TD, San Juan AF, et al. Excessive skeletal muscle recruitment during strenuous exercise in McArdle patients. Eur J Appl Physiol. 2010;110(5):1047–55.

    PubMed  Google Scholar 

  52. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.

    PubMed  CAS  Google Scholar 

  53. Dirksen RT. Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle. Appl Physiol Nutr Metab. 2009;34(3):389–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Nogales-Gadea G, Consuegra-Garcia I, Rubio JC, et al. A transcriptomic approach to search for novel phenotypic regulators in McArdle disease. PLoS One. 2012;7(2):e31718.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Odermatt A, Taschner PE, Khanna VK, et al. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Nat Genet. 1996;14(2):191–4.

    PubMed  CAS  Google Scholar 

  56. Odermatt A, Barton K, Khanna VK, et al. The mutation of Pro789 to Leu reduces the activity of the fast-twitch skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) and is associated with Brody disease. Hum Genet. 2000;106(5):482–91.

    PubMed  CAS  Google Scholar 

  57. Pan Y, Zvaritch E, Tupling AR, et al. Targeted disruption of the ATP2A1 gene encoding the sarco(endo)plasmic reticulum Ca2+ ATPase isoform 1 (SERCA1) impairs diaphragm function and is lethal in neonatal mice. J Biol Chem. 2003;278(15):13367–75.

    PubMed  CAS  Google Scholar 

  58. Periasamy M, Kalyanasundaram A. SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve. 2007;35(4):430–42.

    PubMed  CAS  Google Scholar 

  59. Cairns SP. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36(4):279–91.

    PubMed  Google Scholar 

  60. Vissing J, Haller RG. Mechanisms of exertional fatigue in muscle glycogenoses. Neuromuscul Disord. 2012;22(Suppl 3):S168–71.

    PubMed  Google Scholar 

  61. Overgaard K, Nielsen OB. Activity-induced recovery of excitability in K(+)-depressed rat soleus muscle. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R48–55.

    PubMed  CAS  Google Scholar 

  62. Nielsen OB, de Paoli F, Overgaard K. Protective effects of lactic acid on force production in rat skeletal muscle. J Physiol. 2001;536(Pt 1):161–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. O’Dochartaigh CS, Ong HY, Lovell SM, et al. Oxygen consumption is increased relative to work rate in patients with McArdle’s disease. Eur J Clin Invest. 2004;34(11):731–7.

    PubMed  Google Scholar 

  64. Mate-Munoz JL, Moran M, Perez M, et al. Favorable responses to acute and chronic exercise in McArdle patients. Clin J Sports Med. 2007;17(4):297–303.

    Google Scholar 

  65. Chavarren J, Calbet JA. Cycling efficiency and pedalling frequency in road cyclists. Eur J Appl Physiol Occup Physiol. 1999;80(6):555–63.

    PubMed  CAS  Google Scholar 

  66. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70(2):919–27.

    PubMed  CAS  Google Scholar 

  67. Keel BR, Brit M. McArdle’s disease: a clinical review and case report. Tenn Med. 2013;106(10):33, 37.

  68. Miteff F, Potter HC, Allen J, et al. Clinical and laboratory features of patients with myophosphorylase deficiency (McArdle disease). J Clin Neurosci. 2011;18(8):1055–8.

    PubMed  CAS  Google Scholar 

  69. Pillarisetti J, Ahmed A. McArdle disease presenting as acute renal failure. South Med J. 2007;100(3):313–6.

    PubMed  Google Scholar 

  70. Getachew E, Prayson RA. Pathologic quiz case: a man with exertion-induced cramps and myoglobinuria. McArdle disease (glycogenosis type V or myophosphorylase deficiency). Arch Pathol Lab Med. 2003;127(9):1227–8.

    PubMed  Google Scholar 

  71. Leite AON, Rocha M. McArdle diesease: a case report and review. Int Med Case Rep J. 2012;20(5):1–4. doi:10.2147/IMCRJ.S28664.

    Google Scholar 

  72. Mineo I, Kono N, Shimizu T, et al. Excess purine degradation in exercising muscles of patients with glycogen storage disease types V and VII. J Clin Invest. 1985;76(2):556–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Brooke MH, Patterson VH, Kaiser KK. Hypoxanthine and Mcardle disease: a clue to metabolic stress in the working forearm. Muscle Nerve. 1983;6(3):204–6.

    PubMed  CAS  Google Scholar 

  74. Kitaoka Y, Ogborn DI, Nilsson MI, et al. Oxidative stress and Nrf2 signaling in McArdle disease. Mol Genet Metab. 2013;110(3):297–302.

    PubMed  CAS  Google Scholar 

  75. Russo PJ, Phillips JW, Seidler NW. The role of lipid peroxidation in McArdle’s disease: applications for treatment of other myopathies. Med Hypotheses. 1992;39(2):147–51.

    PubMed  CAS  Google Scholar 

  76. Tidball JG. Inflammatory cell response to acute muscle injury. Med Sci Sport Exerc. 1995;27(7):1022–32.

    CAS  Google Scholar 

  77. Pedersen BK, Ostrowski K, Rohde T, et al. The cytokine response to strenuous exercise. Can J Physiol Pharmacol. 1998;76(5):505–11.

    PubMed  CAS  Google Scholar 

  78. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98(4):1154–62.

    PubMed  CAS  Google Scholar 

  79. Bruunsgaard H. Physical activity and modulation of systemic low-level inflammation. J Leukoc Biol. 2005;78(4):819–35.

    PubMed  CAS  Google Scholar 

  80. Fiuza-Luces C, Garatachea N, Berger NA, et al. Exercise is the real polypill. Physiology. 2013;28(5):330–58.

    PubMed  CAS  Google Scholar 

  81. Lucia A, Smith L, Naidoo M, et al. McArdle disease: another systemic low-inflammation disorder? Neurosci Lett. 2008;431(2):106–11.

    PubMed  CAS  Google Scholar 

  82. Lawrence JC Jr, Roach PJ. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes. 1997;46(4):541–7.

    PubMed  CAS  Google Scholar 

  83. Nielsen JN, Vissing J, Wojtaszewski JFP, et al. Decreased insulin action in skeletal muscle from patients with McArdle’s disease. Am J Physiol Endocrinol Metab. 2002;282(6):E1267–75.

    PubMed  CAS  Google Scholar 

  84. Nielsen JN, Wojtaszewski JFP, Haller RG, et al. Role of 5′AMP-activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle’s disease. J Physiol. 2002;541(Pt 3):979–89.

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Nogales-Gadea G, Mormeneo E, Garcia-Consuegra I, et al. Expression of glycogen phosphorylase isoforms in cultured muscle from patients with McArdle’s disease carrying the p.R771PfsX33 PYGM mutation. PLoS One. 2010;5(10):pii.e13164.

  86. Valdes S, Rojo-Martinez G, Soriguer F. Evolution of prevalence of type 2 diabetes in adult Spanish population. Med Clin. 2007;129(9):352–5.

    Google Scholar 

  87. Roach PJ, Cao Y, Corbett CA, et al. Glycogen metabolism and signal transduction in mammals and yeast. Adv Enzyme Regul. 1991;31:101–20.

    PubMed  CAS  Google Scholar 

  88. Prats C, Helge JW, Nordby P, et al. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization. J Biol Chem. 2009;284(23):15692–700.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Meyer F, Heilmeyer LM Jr, Haschke RH, et al. Control of phosphorylase activity in a muscle glycogen particle: I. Isolation and characterization of the protein-glycogen complex. J Biol Chem. 1970;245(24):6642–8.

    PubMed  CAS  Google Scholar 

  90. Nielsen JN, Richter EA. Regulation of glycogen synthase in skeletal muscle during exercise. Acta Physiol Scand. 2003;178(4):309–19.

    PubMed  CAS  Google Scholar 

  91. Zachwieja JJ, Costill DL, Pascoe DD, et al. Influence of muscle glycogen depletion on the rate of resynthesis. Med Sci Sport Exerc. 1991;23(1):44–8.

    CAS  Google Scholar 

  92. Aschenbach WG, Suzuki Y, Breeden K, et al. The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise. J Biol Chem. 2001;276(43):39959–67.

    PubMed  CAS  Google Scholar 

  93. Roelofs RI, Engel WK, Chauvin PB. Histochemical phosphorylase activity in regenerating muscle fibers from myophosphorylase-deficient patients. Science. 1972;177(4051):795–7.

    PubMed  CAS  Google Scholar 

  94. Mitsumoto H. McArdle disease: phosphorylase activity in regenerating muscle fibers. Neurology. 1979;29(2):258–62.

    PubMed  CAS  Google Scholar 

  95. Felice KJ, Grunnet ML, Sima AA. Selective atrophy of type 1 muscle fibers in McArdle’s disease. Neurology. 1996;47(2):581–3.

    PubMed  CAS  Google Scholar 

  96. Bresolin N, Miranda A, Jacobson M, et al. Phosphorylase isoenzymes of human brain. Neurochem Pathol. 1983;1:171–8.

    CAS  Google Scholar 

  97. Pfeiffer-Guglielmi B, Fleckenstein B, Jung G, et al. Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem. 2003;85(1):73–81.

    PubMed  CAS  Google Scholar 

  98. Schmid H, Pfeiffer-Guglielmi B, Dolderer B, et al. Expression of the brain and muscle isoforms of glycogen phosphorylase in rat heart. Neurochem Res. 2009;34(3):581–6.

    PubMed  CAS  Google Scholar 

  99. Rommel O, Kley RA, Dekomien G, et al. Muscle pain in myophosphorylase deficiency (McArdle’s disease): the role of gender, genotype, and pain-related coping. Pain. 2006;124(3):295–304.

    PubMed  CAS  Google Scholar 

  100. Di Mauro S, Bresolin N. Phosphorylase deficiency. New York: McAGraw-Hill; 1986.

    Google Scholar 

  101. Edelstyn NM, Quinlivan R. A pilot study of neuropsychological performance in McArdle disease. Neuromuscul Disord. 2007;17(9):860 [Poster: M.P4.04].

  102. Mancuso M, Orsucci D, Volterrani D, et al. Cognitive impairment and McArdle disease: is there a link? Neuromuscul Disord. 2011;21(5):356–8.

    PubMed  CAS  Google Scholar 

  103. Nicholls DP, Campbell NP, Stevenson HP, et al. Angina in McArdle’s disease. Heart. 1996;76(4):372–3.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Ratinov G, Baker WP, Swaiman KF. Mcardle’s syndrome with previously unreported electrocardiographic and serum enzyme abnormalities. Ann Intern Med. 1965;62:328–34.

    PubMed  CAS  Google Scholar 

  105. Wheeler SD, Brooke MH. Vascular insufficiency in McArdle’s disease. Neurology. 1983;33(2):249–50.

    PubMed  CAS  Google Scholar 

  106. Moustafa SPD, Connelly MS. Unforeseen cardiac involvement in McArdle’s patients. Heart Lung Circ. 2013;22:769–71.

    PubMed  Google Scholar 

  107. Angelos S, Valberg SJ, Smith BP, et al. Myophosphorylase deficiency associated with rhabdomyolysis and exercise intolerance in 6 related Charolais cattle. Muscle Nerve. 1995;18(7):736–40.

    PubMed  CAS  Google Scholar 

  108. Tan P, Allen JG, Wilton SD, et al. A splice-site mutation causing ovine McArdle’s disease. Neuromuscul Disord. 1997;7(5):336–42.

    PubMed  CAS  Google Scholar 

  109. Howell JM, Walker KR, Creed KE, et al. Phosphorylase re-expression, increase in the force of contraction and decreased fatigue following notexin-induced muscle damage and regeneration in the ovine model of McArdle disease. Neuromuscul Disord. 2014;24(2):167-77.

  110. Nogales-Gadea G, Pinos T, Lucia A, et al. Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. Brain. 2012;135(Pt 7):2048–57.

    PubMed  Google Scholar 

  111. MacLean D, Vissing J, Vissing SF, et al. Oral branched-chain amino acids do not improve exercise capacity in McArdle disease. Neurology. 1998;51(5):1456–9.

    PubMed  CAS  Google Scholar 

  112. Day TJ, Mastaglia FL. Depot-glucagon in the treatment of McArdle’s disease. Aust N Z J Med. 1985;15(6):748–50.

    PubMed  CAS  Google Scholar 

  113. Poels PJ, Braakhekke JP, Joosten EM, et al. Dantrolene sodium does influence the second-wind phenomenon in McArdle’s disease. Electrophysiological evidence during exercise in a double-blind placebo-controlled, cross-over study in 5 patients. J Neurol Sci. 1990;100(1–2):108–12.

    PubMed  CAS  Google Scholar 

  114. Lane RJ, Turnbull DM, Welch JL, et al. A double-blind, placebo-controlled, crossover study of verapamil in exertional muscle pain. Muscle Nerve. 1986;9(7):635–41.

    PubMed  CAS  Google Scholar 

  115. Phoenix J, Hopkins P, Bartram C, et al. Effect of vitamin B6 supplementation in McArdle’s disease: a strategic case study. Neuromuscul Disord. 1998;8(3–4):210–2.

    PubMed  CAS  Google Scholar 

  116. Sato S, Ohi T, Nishino I, et al. Confirmation of the efficacy of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle Nerve. 2012;45(3):436–40.

    PubMed  Google Scholar 

  117. Steele IC, Patterson VH, Nicholls DP. A double blind, placebo controlled, crossover trial of d-ribose in McArdle’s disease. J Neurol Sci. 1996;136(1–2):174–7.

    PubMed  CAS  Google Scholar 

  118. Vorgerd M, Grehl T, Jager M, et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol. 2000;57(7):956–63.

    PubMed  CAS  Google Scholar 

  119. Vorgerd M, Zange J, Kley R, et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol. 2002;59(1):97–101.

    PubMed  Google Scholar 

  120. Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8(10):1893–900.

    PubMed  CAS  Google Scholar 

  121. Nogales-Gadea G, Rubio JC, Fernandez-Cadenas I, et al. Expression of the muscle glycogen phosphorylase gene in patients with McArdle disease: the role of nonsense-mediated mRNA decay. Hum Mut. 2008;29(2):277–83.

    PubMed  CAS  Google Scholar 

  122. Schroeder R, Waldsich C, Wank H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 2000;19(1):1–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  123. Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447(7140):87–91.

    PubMed  CAS  Google Scholar 

  124. Kayali R, Ku J-M, Khitrov G, et al. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum Mol Genet. 2012;21(18):4007–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Gonzalez-Hilarion S, Beghyn T, Jia J, et al. Rescue of nonsense mutations by amlexanox in human cells. Orphanet J Rare Dis. 2012;7:58.

    PubMed  PubMed Central  Google Scholar 

  126. Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest. 1999;104(4):375–81.

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med. 1997;3(11):1280–4.

    PubMed  CAS  Google Scholar 

  128. Schroers A, Kley RA, Stachon A, et al. Gentamicin treatment in McArdle disease: failure to correct myophosphorylase deficiency. Neurology. 2006;66(2):285–6.

    PubMed  CAS  Google Scholar 

  129. Howell JM, Quinlinan R, Sewry C. Investigation of possible treatment regimes for McArdle’s disease using the sheep model of the disease. Neuromuscul Disord. 2008;18(9):828 [Poster: G.P.16.06].

  130. Howell JM, Walker KR, Davies L, et al. Adenovirus and adeno-associated virus-mediated delivery of human myophosphorylase cDNA and LacZ cDNA to muscle in the ovine model of McArdle’s disease: expression and re-expression of glycogen phosphorylase. Neuromuscul Disord. 2008;18(3):248–58.

    PubMed  Google Scholar 

  131. Gregorevic P, Blankinship MJ, Allen JM, et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med. 2004;10(8):828–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Andersen ST, Vissing J. Carbohydrate- and protein-rich diets in McArdle disease: effects on exercise capacity [published erratum appears in J Neurol Neurosurg Psychiatry. 2010;81(12):1414]. J Neurol Neurosurg Psychiatry. 2008;79(12):1359–63.

    PubMed  CAS  Google Scholar 

  133. Andersen ST, Haller RG, Vissing J. Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol. 2008;65(6):786–9.

    PubMed  Google Scholar 

  134. Perez M, Mate-Munoz JL, Foster C, et al. Exercise capacity in a child with McArdle disease. J Child Neurol. 2007;22(7):880–2.

    PubMed  Google Scholar 

  135. Perez M, Foster C, Gonzalez-Freire M, et al. One-year follow-up in a child with McArdle disease: exercise is medicine. Pediatr Neurol. 2008;38(2):133–6.

    PubMed  Google Scholar 

  136. Vissing J, Duno M, Schwartz M, et al. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain. 2009;132(Pt 6):1545–52.

    PubMed  Google Scholar 

  137. Perez M, Moran M, Cardona C, et al. Can patients with McArdle’s disease run? Br J Sports Med. 2007;41(1):53–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Haller RG, Wyrick P, Taivassalo T, et al. Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol. 2006;59(6):922–8.

    PubMed  Google Scholar 

  139. Garcia-Benitez S, Fleck SJ, Naclerio F, et al. Resistance (weight lifting) training in an adolescent with McArdle disease. J Child Neurol. 2013;28(6):805–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Alfredo Santalla, Gisela Nogales-Gadea, Niels Ørtenblad, Astrid Brull, Noemi de Luna, Tomàs Pinós and Alejandro Lucia have no potential conflicts of interest that are directly relevant to the content of this review. The authors original research in the field is supported by grants from the Spanish Ministry of Economy and Competitiveness [Fondo de Investigaciones Sanitarias (FIS), grants number PI12/00914 and PI13/00855]. Gisela Nogales-Gadea and Noemi de Luna are supported by Sara Borrell contracts of ISCIII CD10/00027 and CD11/00060, respectively. Astrid Brull is supported by an FIS grant of ISCIII FI11/00709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomàs Pinós.

Additional information

A. Santalla, G. Nogales-Gadea, T. Pinós, and A. Lucia contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santalla, A., Nogales-Gadea, G., Ørtenblad, N. et al. McArdle Disease: A Unique Study Model in Sports Medicine. Sports Med 44, 1531–1544 (2014). https://doi.org/10.1007/s40279-014-0223-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0223-5

Keywords

Navigation