Skip to main content
Log in

Influence of Pharmacogenomic Profiling Prior to Pharmaceutical Treatment in Metastatic Colorectal Cancer on Cost Effectiveness

A Systematic Review

  • Systematic Review
  • Published:
PharmacoEconomics Aims and scope Submit manuscript

Abstract

Background

Metastatic colorectal cancer (mCRC) imposes a substantial health burden on individual patients and society. Furthermore, rising costs in oncology cause a growing concern about reimbursement for innovations in this sector. The promise of pharmacogenomic profiling and related stratified therapies in mCRC is to improve treatment efficacy and potentially save costs. Among other examples, the commonly used epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab are only effective in patients with kirsten rat sarcoma viral oncogene homolog (KRAS) wild-type cancers. Hence, the adaptation of predictive biomarker testing might be a valid strategy for healthcare systems worldwide.

Objective

This study aims to review the clinical and economic evidence supporting pharmacogenomic profiling prior to the administration of pharmaceutical treatment in mCRC. Moreover, key drivers and areas of uncertainty in cost-effectiveness evaluations are analysed.

Methods

A systematic literature review was conducted to identify studies evaluating the cost effectiveness of predictive biomarkers and the result dependent usage of pharmaceutical agents in mCRC.

Results

The application of predictive biomarkers to detect KRAS mutations prior to the administration of EGFR antibodies saved treatment costs and was cost effective in all identified evaluations. However, because of the lack of data regarding cost-effectiveness analyses for predictive biomarker testing, e.g. for first-line treatment, definitive conclusions cannot be stated. Key drivers and areas of uncertainty in current cost-effectiveness analyses are, among others, the consideration of predictive biomarker costs, the characteristics of single predictive biomarkers and the availability of clinical data for the respective pharmaceutical intervention. Especially the cost effectiveness of uridine diphosphate-glucuronyl transferase 1A1 (UGT1A1) mutation analysis prior to irinotecan-based chemotherapy remains unclear.

Conclusion

Pharmacogenomic profiling has the potential to improve the cost effectiveness of pharmaceutical treatment in mCRC. Hence, quantification of the economic impact of stratified medicine as well as cost-effectiveness analyses of pharmacogenomic profiling are becoming more important. Nevertheless, the methods applied in cost-effectiveness evaluations for the usage of predictive biomarkers for patient selection as well as the level of evidence required to determine clinical effectiveness are areas for further research. However, mCRC is one of the first indications in which stratified therapies are used in clinical practice. Thus, clinical and economic experiences could be helpful when adopting pharmacogenomic profiling into clinical practice for other indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  PubMed  CAS  Google Scholar 

  2. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46(4):765–81.

    Article  PubMed  CAS  Google Scholar 

  3. Van Cutsem E, Nordlinger B, Cervantes A. Advanced colorectal cancer: ESMO Clinical Practice Guidelines for treatment. Ann Oncol. 2010;21(Suppl. 5):v93–7.

    Article  PubMed  Google Scholar 

  4. Trusheim MR, Berndt ER, Douglas FL. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov. 2007;6(4):287–93.

    Article  PubMed  CAS  Google Scholar 

  5. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  6. Schilsky RL. Personalized medicine in oncology: the future is now. Nat Rev Drug Discov. 2010;9(5):363–6.

    Article  PubMed  CAS  Google Scholar 

  7. Ferraldeschi R, Newman WG. Pharmacogenetics and pharmacogenomics: a clinical reality. Ann Clin Biochem. 2011;48(5):410–7.

    Article  PubMed  CAS  Google Scholar 

  8. Adelstein BA, Dobbins TA, Harris CA, et al. A systematic review and meta-analysis of KRAS status as the determinant of response to anti-EGFR antibodies and the impact of partner chemotherapy in metastatic colorectal cancer. Eur J Cancer. 2011;47(9):1343–54.

    Article  PubMed  CAS  Google Scholar 

  9. Jackson DB, Sood AK. Personalized cancer medicine: advances and socio-economic challenges. Nat Rev Clin Oncol. 2011;8(12):735–41.

    Article  PubMed  CAS  Google Scholar 

  10. Folprecht G, Grothey A, Alberts S, et al. Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. Ann Oncol. 2005;16(8):1311–9.

    Article  PubMed  CAS  Google Scholar 

  11. Folprecht G, Gruenberger T, Bechstein WO, et al. Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol. 2010;11(1):38–47.

    Article  PubMed  CAS  Google Scholar 

  12. Adam R, Delvart V, Pascal G, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg. 2004;240(4):644–57.

    PubMed  Google Scholar 

  13. Tomlinson JS, Jarnagin WR, DeMatteo RP, et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol. 2007;25(29):4575–80.

    Article  PubMed  Google Scholar 

  14. Kopetz S, Chang GJ, Overman MJ, et al. Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol. 2009;27(22):3677–83.

    Article  PubMed  Google Scholar 

  15. Köhne CH, Lenz HJ. Chemotherapy with targeted agents for the treatment of metastatic colorectal cancer. Oncologist. 2009;14(5):478–88.

    Article  PubMed  Google Scholar 

  16. Edwards MS, Chadda SD, Zhao Z, et al. A systematic review of treatment guidelines for metastatic colorectal cancer. Colorectal Dis. 2012;14(2):31–47.

    Article  Google Scholar 

  17. Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol. 2009;27(5):672–80.

    Article  PubMed  CAS  Google Scholar 

  18. Tol J, Koopman M, Cats A, et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med. 2009;360(6):563–72.

    Article  PubMed  CAS  Google Scholar 

  19. Jubb AM, Miller KD, Rugo HS, et al. Impact of exploratory biomarkers on the treatment effect of bevacizumab in metastatic breast cancer. Clin Cancer Res. 2011;17(2):372–81.

    Article  PubMed  CAS  Google Scholar 

  20. Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    Article  PubMed  CAS  Google Scholar 

  21. Di Fiore F, Blanchard F, Charbonnier F, et al. Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br J Cancer. 2007;96(8):1166–9.

    Article  PubMed  Google Scholar 

  22. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.

    Article  PubMed  CAS  Google Scholar 

  23. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  PubMed  CAS  Google Scholar 

  24. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  25. Jarry A, Masson D, Cassagnau E, et al. Real-time allele-specific amplification for sensitive detection of the BRAF mutation V600E. Mol Cell Probes. 2004;18(5):349–52.

    Article  PubMed  CAS  Google Scholar 

  26. Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.

    Article  PubMed  Google Scholar 

  27. Blank PR, Moch H, Szucs TD, et al. KRAS and BRAF mutation analysis in metastatic colorectal cancer: a cost-effectiveness analysis from a Swiss perspective. Clin Cancer Res. 2011;17(19):6338–46.

    Article  PubMed  CAS  Google Scholar 

  28. Innocenti F, Undevia SD, Iyer L, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol. 2004;22(8):1382–8.

    Article  PubMed  CAS  Google Scholar 

  29. Hoskins JM, Goldberg RM, Qu P, et al. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst. 2007;99(17):1290–5.

    Article  PubMed  CAS  Google Scholar 

  30. Aapro MS, Bohlius J, Cameron DA, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer. 2011;47(1):8–32.

    Article  PubMed  CAS  Google Scholar 

  31. Van Kuilenburg AB, Meinsma R, van Gennip AH. Pyrimidine degradation defects and severe 5-fluorouracil toxicity. Nucleosides Nucleotides Nucleic Acids. 2004;23(8–9):1371–5.

    Article  PubMed  Google Scholar 

  32. Yong WP, Innocenti F, Ratain MJ. The role of pharmacogenetics in cancer therapeutics. Br J Clin Pharmacol. 2006;62(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  33. Soh TI, Yong WP, Innocenti F. Recent progress and clinical importance on pharmacogenetics in cancer therapy. Clin Chem Lab Med. 2011;49(10):1621–32.

    PubMed  CAS  Google Scholar 

  34. Laurent-Puig P, Cayre A, Manceau G, et al. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol. 2009;27(35):5924–30.

    Article  PubMed  CAS  Google Scholar 

  35. Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res. 2009;69(5):1851–7.

    Article  PubMed  CAS  Google Scholar 

  36. Etienne MC, Chazal M, Laurent-Puig P, et al. Prognostic value of tumoral thymidylate synthase and p53 in metastatic colorectal cancer patients receiving fluorouracil-based chemotherapy: phenotypic and genotypic analyses. J Clin Oncol. 2002;20(12):2832–43.

    Article  PubMed  CAS  Google Scholar 

  37. Shirota Y, Stoehlmacher J, Brabender J, et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol. 2001;19(23):4298–304.

    PubMed  CAS  Google Scholar 

  38. Chua W, Kho PS, Moore MM, et al. Clinical, laboratory and molecular factors predicting chemotherapy efficacy and toxicity in colorectal cancer. Crit Rev Oncol Hematol. 2011;79(3):224–50.

    Article  PubMed  Google Scholar 

  39. Siena S, Sartore-Bianchi A, Di Nicolantonio F, et al. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 2009;101(19):1308–24.

    Article  PubMed  CAS  Google Scholar 

  40. Tappenden P, Jones R, Paisley S, et al. The cost-effectiveness of bevacizumab in the first-line treatment of metastatic colorectal cancer in England and Wales. Eur J Cancer. 2007;43(17):2487–94.

    Article  PubMed  CAS  Google Scholar 

  41. Tappenden P, Jones R, Paisley S, et al. Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer. Health Technol Assess 2007;11(12):1–iv.

    Google Scholar 

  42. Starling N, Tilden D, White J, et al. Cost-effectiveness analysis of cetuximab/irinotecan vs active/best supportive care for the treatment of metastatic colorectal cancer patients who have failed previous chemotherapy treatment. Br J Cancer. 2007;96(2):206–12.

    Article  PubMed  CAS  Google Scholar 

  43. Annemans L, Van Cutsem E, Humblet Y, et al. Cost-effectiveness of cetuximab in combination with irinotecan compared with current care in metastatic colorectal cancer after failure on irinotecan: a Belgian analysis. Acta Clin Belg. 2007;62(6):419–25.

    PubMed  CAS  Google Scholar 

  44. Shiroiwa T, Fukuda T, Tsutani K. Cost-effectiveness analysis of bevacizumab combined with chemotherapy for the treatment of metastatic colorectal cancer in Japan. Clin Ther. 2007;29(10):2256–67.

    Article  PubMed  CAS  Google Scholar 

  45. Chiang A, Million RP. Personalized medicine in oncology: next generation. Nat Rev Drug Discov. 2011;10(12):895–6.

    Article  PubMed  CAS  Google Scholar 

  46. Fojo T, Grady C. How much is life worth: cetuximab, non-small cell lung cancer, and the $440 billion question. J Natl Cancer Inst. 2009;101(15):1044–8.

    Article  PubMed  Google Scholar 

  47. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.

    Article  PubMed  Google Scholar 

  48. Asseburg C, Frank M, Kohne CH, et al. Cost-effectiveness of targeted therapy with cetuximab in patients with K-ras wild-type colorectal cancer presenting with initially unresectable metastases limited to the liver in a German setting. Clin Ther. 2011;33(4):482–97.

    Article  PubMed  CAS  Google Scholar 

  49. Mittmann N, Au HJ, Tu D, et al. Prospective cost-effectiveness analysis of cetuximab in metastatic colorectal cancer: evaluation of National Cancer Institute of Canada Clinical Trials Group CO.17 trial. J Natl Cancer Inst. 2009;101(17):1182–92.

    Article  PubMed  CAS  Google Scholar 

  50. Shiroiwa T, Motoo Y, Tsutani K. Cost-effectiveness analysis of KRAS testing and cetuximab as last-line therapy for colorectal cancer. Mol Diagn Ther. 2010;14(6):375–84.

    Article  PubMed  Google Scholar 

  51. Vijayaraghavan A, Efrusy MB, Goke B, et al. Cost-effectiveness of KRAS testing in metastatic colorectal cancer patients in the United States and Germany. Int J Cancer. 2011;131(2):438–45.

    Article  Google Scholar 

  52. Gold HT, Hall MJ, Blinder V, et al. Cost effectiveness of pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 before irinotecan administration for metastatic colorectal cancer. Cancer. 2009;115(17):3858–67.

    Article  PubMed  CAS  Google Scholar 

  53. Obradovic M, Mrhar A, Kos M. Cost-effectiveness of UGT1A1 genotyping in second-line, high-dose, once every 3 weeks irinotecan monotherapy treatment of colorectal cancer. Pharmacogenomics. 2008;9(5):539–49.

    Article  PubMed  CAS  Google Scholar 

  54. Pichereau S, Le Louran A, Lecomte T, et al. Cost-effectiveness of UGT1A1*28 genotyping in preventing severe neutropenia following FOLFIRI therapy in colorectal cancer. J Pharm Pharm Sci. 2010;13(4):615–25.

    PubMed  Google Scholar 

  55. Tol J, Dijkstra JR, Vink-Borger ME, et al. High sensitivity of both sequencing and real-time PCR analysis of KRAS mutations in colorectal cancer tissue. J Cell Mol Med. 2010;14(8):2122–31.

    Article  PubMed  CAS  Google Scholar 

  56. Jimeno A, Messersmith WA, Hirsch FR, et al. KRAS mutations and sensitivity to epidermal growth factor receptor inhibitors in colorectal cancer: practical application of patient selection. J Clin Oncol. 2009;27(7):1130–6.

    Article  PubMed  CAS  Google Scholar 

  57. De Roock W, Piessevaux H, De Schutter J, et al. KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann Oncol. 2008;19(3):508–15.

    Article  PubMed  Google Scholar 

  58. Maughan TS, Adams R, Smith G, et al. Identification of potentially responsive subsets when cetuximab is added to oxaliplatin-fluoropyrimidine chemotherapy (CT) in first-line advanced colorectal cancer (aCRC): mature results of the MRC COIN trial. J Clin Oncol. 2010; 28 (15s): abstr 3502.

    Google Scholar 

  59. Tveit K, Guren B, Glimelius B. Randomized phase III study of 5–fluorouracil/folinate/oxaliplatin given continuously or intermittently with or without cetuximab, as first-line treatment of metastatic colorectal cancer: the Nordic VII study (NCT00145314), by the Nordic colorectal cancer biomodulation group. Ann Oncol. 2010;21(8):vii9.

    Google Scholar 

  60. Garcia-Saenz JA, Sastre J. Díaz-Rubio García E. Biomarkers and anti-EGFR therapies for KRAS wild-type metastatic colorectal cancer. Clin Transl Oncol. 2009;11(11):737–47.

    Article  PubMed  CAS  Google Scholar 

  61. De Roock W, Jonker DJ, Di Nicolantonio F. S et al. Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA. 2010;304(16):1812–20.

    Article  PubMed  Google Scholar 

  62. Smart A, Martin P, Parker M. Tailored medicine: whom will it fit? The ethics of patient and disease stratification. Bioethics. 2004;18(4):322–42.

    Article  PubMed  Google Scholar 

  63. Richman SD, Seymour MT, Chambers P, et al. KRAS and BRAF mutations in advanced colorectal cancer are associated with poor prognosis but do not preclude benefit from oxaliplatin or irinotecan: results from the MRC FOCUS trial. J Clin Oncol. 2009;27(35):5931–7.

    Article  PubMed  CAS  Google Scholar 

  64. Dahabreh IJ, Terasawa T, Castaldi PJ, et al. Systematic review: anti-epidermal growth factor receptor treatment effect modification by KRAS mutations in advanced colorectal cancer. Ann Intern Med. 2011;154(1):37–49.

    Article  PubMed  Google Scholar 

  65. Lievre A, Bachet JB, Boige V, et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 2008;26(3):374–9.

    Article  PubMed  CAS  Google Scholar 

  66. Sculpher M. Subgroups and heterogeneity in cost-effectiveness analysis. Pharmacoeconomics. 2008;26(9):799–806.

    Article  PubMed  Google Scholar 

  67. Brookes ST, Whitely E, Egger M, et al. Subgroup analyses in randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction test. J Clin Epidemiol. 2004;57(3):229–36.

    Article  PubMed  Google Scholar 

  68. Wang R, Lagakos SW, Ware JH, et al. Statistics in medicine-reporting of subgroup analyses in clinical trials. N Engl J Med. 2007;357(21):2189–94.

    Article  PubMed  CAS  Google Scholar 

  69. Rothwell PM. Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet. 2005;365(9454):176–86.

    Article  PubMed  Google Scholar 

  70. Ortega J, Vigil CE, Chodkiewicz C. Current progress in targeted therapy for colorectal cancer. Cancer Control. 2010;17(1):7–15.

    PubMed  Google Scholar 

  71. Chu E. An update on the current and emerging targeted agents in metastatic colorectal cancer. Clin Colorectal Cancer. 2012;11(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  72. Davis JC, Furstenthal L, Desai AA, et al. The microeconomics of personalized medicine: today’s challenge and tomorrow’s promise. Nat Rev Drug Discov. 2009;8(4):279–86.

    Article  PubMed  CAS  Google Scholar 

  73. Deverka PA. Pharmacogenomics, evidence, and the role of payers. Public Health Genomics. 2009;12(3):149–57.

    Article  PubMed  CAS  Google Scholar 

  74. Cook J, Hunter G, Vernon JA. The future costs, risks and rewards of drug development: the economics of pharmacogenomics. Pharmacoeconomics. 2009;27(5):355–63.

    Article  PubMed  Google Scholar 

  75. Million RP. Impact of genetic diagnostics on drug development strategy. Nat Rev Drug Discov. 2006;5(6):459–62.

    Article  PubMed  CAS  Google Scholar 

  76. Ashley EA, Butte AJ, Wheeler MT, et al. Clinical assessment incorporating a personal genome. Lancet. 2010;375(9725):1525–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to conduct this study or prepare the manuscript. The authors have no conflicts of interest that are directly relevant to this article and its preparation was not influenced by any third party. TM and MF have received funding for model development of cost-effectiveness analysis in CRC from Merck Serono.

Author contributions

MF was the lead author, had the idea for the paper, and created the overall design as well as the initial draft. TM is guarantor for the overall content, and contributed through the literature search, discussion of the design and structure, writing, and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, M., Mittendorf, T. Influence of Pharmacogenomic Profiling Prior to Pharmaceutical Treatment in Metastatic Colorectal Cancer on Cost Effectiveness. PharmacoEconomics 31, 215–228 (2013). https://doi.org/10.1007/s40273-012-0017-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40273-012-0017-2

Keywords

Navigation