Skip to main content
Log in

Serious Non-AIDS Events: Therapeutic Targets of Immune Activation and Chronic Inflammation in HIV Infection

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

In the antiretroviral therapy (ART) era, serious non-AIDS events (SNAEs) have become the major causes of morbidity and mortality in HIV-infected persons. Early ART initiation has the strongest evidence for reducing SNAEs and mortality. Biomarkers of immune activation, inflammation and coagulopathy do not fully normalize despite virologic suppression and persistent immune activation is an important contributor to SNAEs. A number of strategies aimed to reduce persistent immune activation including ART intensification to reduce residual viremia; treatment of co-infections to reduce chronic antigen stimulation; the use of anti-inflammatory agents, reducing microbial translocation as well as interventions to improve immune recovery through cytokine administration and reducing lymphoid tissue fibrosis, have been investigated. To date, there is little conclusive evidence on which strategies beyond treatment of hepatitis B and C co-infections and reducing cardiovascular risk factors will result in clinical benefits in patients already on ART with viral suppression. The use of statins seems to show early promise and larger clinical trials are underway to confirm their efficacy. At this stage, clinical care of HIV-infected patients should therefore focus on early diagnosis and prompt ART initiation, treatment of active co-infections and the aggressive management of co-morbidities until further data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Sighem A, Danner S, Ghani AC, Gras L, Anderson RM, de Wolf F. Mortality in patients with successful initial response to highly active antiretroviral therapy is still higher than in non-HIV-infected individuals. J Acquir Immune Defic Syndr. 2005;40(2):212–8.

    Article  PubMed  Google Scholar 

  2. Collaboration TATC. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 2008;372(9635):293–9. doi:10.1016/S0140-6736(08)61113-7.

    Article  Google Scholar 

  3. Nakagawa F, Lodwick RK, Smith CJ, Smith R, Cambiano V, Lundgren JD, et al. Projected life expectancy of people with HIV according to timing of diagnosis. AIDS. 2012;26(3):335–43. doi:10.1097/QAD.0b013e32834dcec9.

    Article  PubMed  Google Scholar 

  4. Weber R, Ruppik M, Rickenbach M, Spoerri A, Furrer H, Battegay M, et al. Decreasing mortality and changing patterns of causes of death in the Swiss HIV Cohort Study. HIV Med. 2013;14(4):195–207. doi:10.1111/j.1468-1293.2012.01051.x.

    Article  CAS  PubMed  Google Scholar 

  5. Causes of death in. HIV-1-infected patients treated with antiretroviral therapy, 1996–2006: collaborative analysis of 13 HIV cohort studies. Clin Infect Dis Off Publ Infect Dis Soc Am. 2010;50(10):1387–96. doi:10.1086/652283.

    Article  Google Scholar 

  6. Palella FJ Jr, Baker RK, Moorman AC, Chmiel JS, Wood KC, Brooks JT, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. J Acquir Immune Defic Syndr. 2006;43(1):27–34. doi:10.1097/01.qai.0000233310.90484.16.

    Article  CAS  PubMed  Google Scholar 

  7. Rosenberg AZ, Naicker S, Winkler CA, Kopp JB. HIV-associated nephropathies: epidemiology, pathology, mechanisms and treatment. Nat Rev Nephrol. 2015;11(3):150–60. doi:10.1038/nrneph.2015.9.

    Article  CAS  PubMed  Google Scholar 

  8. Hong F, Saiman Y, Si C, Mosoian A, Bansal MB. X4 Human immunodeficiency virus type 1 gp120 promotes human hepatic stellate cell activation and collagen I expression through interactions with CXCR4. PLoS One. 2012;7(3):e33659. doi:10.1371/journal.pone.0033659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Babu CK, Suwansrinon K, Bren GD, Badley AD, Rizza SA. HIV induces TRAIL sensitivity in hepatocytes. PLoS One. 2009;4(2):e4623. doi:10.1371/journal.pone.0004623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Achhra AC, Petoumenos K, Law MG. Relationship between CD4 cell count and serious long-term complications among HIV-positive individuals. Curr Opin HIV AIDS. 2014;9(1):63–71. doi:10.1097/COH.0000000000000017.

    Article  PubMed  Google Scholar 

  11. Mocroft A, Phillips AN, Gatell J, Horban A, Ledergerber B, Zilmer K, et al. CD4 cell count and viral load-specific rates of AIDS, non-AIDS and deaths according to current antiretroviral use. AIDS. 2013;27(6):907–18. doi:10.1097/QAD.0b013e32835cb766.

    Article  PubMed  Google Scholar 

  12. Baker JV, Peng G, Rapkin J, Abrams DI, Silverberg MJ, MacArthur RD, et al. CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection. AIDS. 2008;22(7):841–8. doi:10.1097/QAD.0b013e3282f7cb76.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guiguet M, Boue F, Cadranel J, Lang JM, Rosenthal E, Costagliola D, et al. Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDH-ANRS CO4): a prospective cohort study. Lancet Oncol. 2009;10(12):1152–9. doi:10.1016/S1470-2045(09)70282-7.

    Article  CAS  PubMed  Google Scholar 

  14. Sabin CA, Ryom L, De Wit S, Mocroft A, Phillips AN, Worm SW, et al. Associations between immune depression and cardiovascular events in HIV infection. AIDS. 2013;27(17):2735–48. doi:10.1097/01.aids.0000432457.91228.f3.

    Article  PubMed  Google Scholar 

  15. Alter MJ. Epidemiology of viral hepatitis and HIV co-infection. J Hepatol. 2006;44(1 Suppl):S6–9. doi:10.1016/j.jhep.2005.11.004.

    Article  PubMed  Google Scholar 

  16. Wyatt CM, Malvestutto C, Coca SG, Klotman PE, Parikh CR. The impact of hepatitis C virus coinfection on HIV-related kidney disease: a systematic review and meta-analysis. AIDS. 2008;22(14):1799–807. doi:10.1097/QAD.0b013e32830e0152.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Freiberg MS, Chang CC, Skanderson M, McGinnis K, Kuller LH, Kraemer KL, et al. The risk of incident coronary heart disease among veterans with and without HIV and hepatitis C. Circ Cardiovasc Qual Outcomes. 2011;4(4):425–32. doi:10.1161/CIRCOUTCOMES.110.957415.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giordano TP, Kramer JR, Souchek J, Richardson P, El-Serag HB. Cirrhosis and hepatocellular carcinoma in HIV-infected veterans with and without the hepatitis C virus: a cohort study, 1992–2001. Arch Intern Med. 2004;164(21):2349–54. doi:10.1001/archinte.164.21.2349.

    Article  PubMed  Google Scholar 

  19. Chen TY, Ding EL, Seage Iii GR, Kim AY. Meta-analysis: increased mortality associated with hepatitis C in HIV-infected persons is unrelated to HIV disease progression. Clin Infect Dis Off Publ Infect Dis Soc Am. 2009;49(10):1605–15. doi:10.1086/644771.

    Article  Google Scholar 

  20. Saves M, Chene G, Ducimetiere P, Leport C, Le Moal G, Amouyel P, et al. Risk factors for coronary heart disease in patients treated for human immunodeficiency virus infection compared with the general population. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;37(2):292–8. doi:10.1086/375844.

    Article  Google Scholar 

  21. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12. doi:10.1210/jc.2006-2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Overton ET, Nurutdinova D, Freeman J, Seyfried W, Mondy KE. Factors associated with renal dysfunction within an urban HIV-infected cohort in the era of highly active antiretroviral therapy. HIV Med. 2009;10(6):343–50. doi:10.1111/j.1468-1293.2009.00693.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Althoff KN, McGinnis KA, Wyatt CM, Freiberg MS, Gilbert C, Oursler KK, et al. Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(4):627–38. doi:10.1093/cid/ciu869.

    Article  Google Scholar 

  24. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13(11):759–71. doi:10.1038/nrc3611.

    Article  CAS  PubMed  Google Scholar 

  25. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99. doi:10.1016/j.cell.2010.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410–22. doi:10.1038/nm.2538.

    Article  CAS  PubMed  Google Scholar 

  27. Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity. 2013;38(6):1092–104. doi:10.1016/j.immuni.2013.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Czaja AJ. Hepatic inflammation and progressive liver fibrosis in chronic liver disease. World J Gastroenterol WJG. 2014;20(10):2515–32. doi:10.3748/wjg.v20.i10.2515.

    Article  CAS  PubMed  Google Scholar 

  29. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–56. doi:10.1146/annurev-pathol-011110-130246.

    Article  CAS  PubMed  Google Scholar 

  30. Il’yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, et al. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomark Prev. 2005;14(10):2413–8. doi:10.1158/1055-9965.EPI-05-0316.

    Article  Google Scholar 

  31. Siemes C, Visser LE, Coebergh JW, Splinter TA, Witteman JC, Uitterlinden AG, et al. C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol. 2006;24(33):5216–22. doi:10.1200/JCO.2006.07.1381.

    Article  CAS  PubMed  Google Scholar 

  32. Heikkila K, Harris R, Lowe G, Rumley A, Yarnell J, Gallacher J, et al. Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control. 2009;20(1):15–26. doi:10.1007/s10552-008-9212-z.

    Article  PubMed  Google Scholar 

  33. Kaptoge S, Di Angelantonio E, Lowe G, Pepys MB, Thompson SG, Collins R, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–40. doi:10.1016/S0140-6736(09)61717-7.

    Article  PubMed  CAS  Google Scholar 

  34. Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P, et al. Fibrin D-dimer and coronary heart disease: prospective study and meta-analysis. Circulation. 2001;103(19):2323–7.

    Article  CAS  PubMed  Google Scholar 

  35. Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799–809. doi:10.1001/jama.294.14.1799.

    CAS  PubMed  Google Scholar 

  36. Danesh J, Kaptoge S, Mann AG, Sarwar N, Wood A, Angleman SB, et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med. 2008;5(4):e78. doi:10.1371/journal.pmed.0050078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Harris TB, Ferrucci L, Tracy RP, Corti MC, Wacholder S, Ettinger WH Jr, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506–12 (pii: S0002934399000662).

    Article  CAS  PubMed  Google Scholar 

  38. Cohen HJ, Harris T, Pieper CF. Coagulation and activation of inflammatory pathways in the development of functional decline and mortality in the elderly. Am J Med. 2003;114(3):180–7 (pii: S0002934302014845).

    Article  PubMed  Google Scholar 

  39. Suzuki T, Voeks J, Zakai NA, Jenny NS, Brown TM, Safford MM, et al. Metabolic syndrome, C-reactive protein, and mortality in US Blacks and Whites: the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. Diabetes Care. 2014;37(8):2284–90. doi:10.2337/dc13-2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shive CL, Jiang W, Anthony DD, Lederman MM. Soluble CD14 is a nonspecific marker of monocyte activation. AIDS. 2015;29(10):1263–5. doi:10.1097/QAD.0000000000000735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borges AH, Silverberg MJ, Wentworth D, Grulich AE, Fatkenheuer G, Mitsuyasu R, et al. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. AIDS. 2013;27(9):1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One. 2012;7(9):e44454. doi:10.1371/journal.pone.0044454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ford ES, Greenwald JH, Richterman AG, Rupert A, Dutcher L, Badralmaa Y, et al. Traditional risk factors and D-dimer predict incident cardiovascular disease events in chronic HIV infection. AIDS. 2010;24(10):1509–17. doi:10.1097/QAD.0b013e32833ad914.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nordell AD, McKenna M, Borges AH, Duprez D, Neuhaus J, Neaton JD, et al. Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J Am Heart Assoc. 2014;3(3):e000844. doi:10.1161/JAHA.114.000844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tien PC, Choi AI, Zolopa AR, Benson C, Tracy R, Scherzer R, et al. Inflammation and mortality in HIV-infected adults: analysis of the FRAM study cohort. J Acquir Immune Defic Syndr. 2010;55(3):316–22. doi:10.1097/QAI.0b013e3181e66216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5(10):e203. doi:10.1371/journal.pmed.0050203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90. doi:10.1093/infdis/jiq118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iwasaki A. Innate immune recognition of HIV-1. Immunity. 2012;37(3):389–98. doi:10.1016/j.immuni.2012.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Altfeld M, Gale M Jr. Innate immunity against HIV-1 infection. Nat Immunol. 2015;16(6):554–62. doi:10.1038/ni.3157.

    Article  CAS  PubMed  Google Scholar 

  50. McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87–103. doi:10.1038/nri3787.

    Article  CAS  PubMed  Google Scholar 

  51. Ho HN, Hultin LE, Mitsuyasu RT, Matud JL, Hausner MA, Bockstoce D, et al. Circulating HIV-specific CD8+ cytotoxic T cells express CD38 and HLA-DR antigens. J Immunol. 1993;150(7):3070–9.

    CAS  PubMed  Google Scholar 

  52. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505(7484):509–14. doi:10.1038/nature12940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16. doi:10.1128/IAI.73.4.1907-1916.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brenchley JM. Mucosal immunity in human and simian immunodeficiency lentivirus infections. Mucosal Immunol. 2013;6(4):657–65. doi:10.1038/mi.2013.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;200(6):749–59. doi:10.1084/jem.20040874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature. 2005;434(7037):1148–52. doi:10.1038/nature03513.

    CAS  PubMed  Google Scholar 

  57. Veazey RS, Tham IC, Mansfield KG, DeMaria M, Forand AE, Shvetz DE, et al. Identifying the target cell in primary simian immunodeficiency virus (SIV) infection: highly activated memory CD4(+) T cells are rapidly eliminated in early SIV infection in vivo. J Virol. 2000;74(1):57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. 2008;112(7):2826–35. doi:10.1182/blood-2008-05-159301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517. doi:10.1146/annurev.immunol.021908.132710.

    Article  CAS  PubMed  Google Scholar 

  60. Liu JZ, Pezeshki M, Raffatellu M. Th17 cytokines and host-pathogen interactions at the mucosa: dichotomies of help and harm. Cytokine. 2009;48(1–2):156–60. doi:10.1016/j.cyto.2009.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, et al. Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog. 2010;6(4):e1000852. doi:10.1371/journal.ppat.1000852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gori A, Tincati C, Rizzardini G, Torti C, Quirino T, Haarman M, et al. Early impairment of gut function and gut flora supporting a role for alteration of gastrointestinal mucosa in human immunodeficiency virus pathogenesis. J Clin Microbiol. 2008;46(2):757–8. doi:10.1128/JCM.01729-07.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mutlu EA, Keshavarzian A, Losurdo J, Swanson G, Siewe B, Forsyth C, et al. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects. PLoS Pathog. 2014;10(2):e1003829. doi:10.1371/journal.ppat.1003829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5(193):193ra91. doi:10.1126/scitranslmed.3006438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Novati S, Sacchi P, Cima S, Zuccaro V, Columpsi P, Pagani L, et al. General issues on microbial translocation in HIV-infected patients. Eur Rev Med Pharmacol Sci. 2015;19(5):866–78.

    CAS  PubMed  Google Scholar 

  66. Marchetti G, Tincati C, Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev. 2013;26(1):2–18. doi:10.1128/CMR.00050-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bas S, Gauthier BR, Spenato U, Stingelin S, Gabay C. CD14 is an acute-phase protein. J Immunol. 2004;172(7):4470–9.

    Article  CAS  PubMed  Google Scholar 

  68. Perkins MR, Bartha I, Timmer JK, Liebner JC, Wollinsky D, Gunthard HF, et al. The interplay between host genetic variation, viral replication, and microbial translocation in untreated HIV-infected individuals. J Infect Dis. 2015;212(4):578–84. doi:10.1093/infdis/jiv089.

    Article  PubMed  Google Scholar 

  69. Hunt PW, Sinclair E, Rodriguez B, Shive C, Clagett B, Funderburg N, et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. J Infect Dis. 2014;210(8):1228–38. doi:10.1093/infdis/jiu238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Romero-Sanchez M, Gonzalez-Serna A, Pacheco YM, Ferrando-Martinez S, Machmach K, Garcia-Garcia M, et al. Different biological significance of sCD14 and LPS in HIV-infection: importance of the immunovirology stage and association with HIV-disease progression markers. J Infect. 2012;65(5):431–8. doi:10.1016/j.jinf.2012.06.008.

    Article  PubMed  Google Scholar 

  71. Kovacs A, Al-Harthi L, Christensen S, Mack W, Cohen M, Landay A. CD8(+) T cell activation in women coinfected with human immunodeficiency virus type 1 and hepatitis C virus. J Infect Dis. 2008;197(10):1402–7. doi:10.1086/587696.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gonzalez VD, Falconer K, Blom KG, Reichard O, Morn B, Laursen AL, et al. High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by alpha interferon and ribavirin treatment. J Virol. 2009;83(21):11407–11. doi:10.1128/JVI.01211-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kwan CK, Ernst JD. HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev. 2011;24(2):351–76. doi:10.1128/CMR.00042-10.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med. 2003;163(9):1009–21. doi:10.1001/archinte.163.9.1009.

    Article  PubMed  Google Scholar 

  75. Deayton JR, Prof Sabin CA, Johnson MA, Emery VC, Wilson P, Griffiths PD. Importance of cytomegalovirus viraemia in risk of disease progression and death in HIV-infected patients receiving highly active antiretroviral therapy. Lancet. 2004;363(9427):2116–21. doi:10.1016/S0140-6736(04)16500-8.

  76. El Amari EB, Combescure C, Yerly S, Calmy A, Kaiser L, Hasse B, et al. Clinical relevance of cytomegalovirus viraemia. HIV Med. 2011;12(7):394–402. doi:10.1111/j.1468-1293.2010.00900.x.

    Article  PubMed  Google Scholar 

  77. Ling PD, Vilchez RA, Keitel WA, Poston DG, Peng RS, White ZS, et al. Epstein-Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;37(9):1244–9. doi:10.1086/378808.

    Article  CAS  Google Scholar 

  78. Sullivan ZA, Wong EB, Ndung’u T, Kasprowicz VO, Bishai WR. Latent and active tuberculosis infection increase immune activation in individuals co-infected with HIV. EBioMedicine. 2015;2(4):334–40. doi:10.1016/j.ebiom.2015.03.005.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wittkop L, Bitard J, Lazaro E, Neau D, Bonnet F, Mercie P, et al. Effect of cytomegalovirus-induced immune response, self antigen-induced immune response, and microbial translocation on chronic immune activation in successfully treated HIV type 1-infected patients: the ANRS CO3 Aquitaine Cohort. J Infect Dis. 2013;207(4):622–7. doi:10.1093/infdis/jis732.

    Article  CAS  PubMed  Google Scholar 

  80. Napolitano LA, Grant RM, Deeks SG, Schmidt D, De Rosa SC, Herzenberg LA, et al. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nat Med. 2001;7(1):73–9. doi:10.1038/83381.

    Article  CAS  PubMed  Google Scholar 

  81. Catalfamo M, Di Mascio M, Hu Z, Srinivasula S, Thaker V, Adelsberger J, et al. HIV infection-associated immune activation occurs by two distinct pathways that differentially affect CD4 and CD8 T cells. Proc Natl Acad Sci USA. 2008;105(50):19851–6. doi:10.1073/pnas.0810032105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vanderford TH, Adamski J, Silvestri G. HIV-associated chronic immune activation: current understandings and therapeutic intervention. HIV Ther. 2010;4(2):161–77.

    Article  Google Scholar 

  83. Groux H, Torpier G, Monte D, Mouton Y, Capron A, Ameisen JC. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med. 1992;175(2):331–40.

    Article  CAS  PubMed  Google Scholar 

  84. Muro-Cacho CA, Pantaleo G, Fauci AS. Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J Immunol. 1995;154(10):5555–66.

    CAS  PubMed  Google Scholar 

  85. Gorochov G, Neumann AU, Kereveur A, Parizot C, Li T, Katlama C, et al. Perturbation of CD4+ and CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy. Nat Med. 1998;4(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  86. Estes JD, Li Q, Reynolds MR, Wietgrefe S, Duan L, Schacker T, et al. Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J Infect Dis. 2006;193(5):703–12. doi:10.1086/500368.

    Article  CAS  PubMed  Google Scholar 

  87. Schacker TW, Brenchley JM, Beilman GJ, Reilly C, Pambuccian SE, Taylor J, et al. Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol. 2006;13(5):556–60. doi:10.1128/CVI.13.5.556-560.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeng M, Southern PJ, Reilly CS, Beilman GJ, Chipman JG, Schacker TW, et al. Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8(1):e1002437. doi:10.1371/journal.ppat.1002437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Funderburg NT, Mayne E, Sieg SF, Asaad R, Jiang W, Kalinowska M, et al. Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood. 2010;115(2):161–7. doi:10.1182/blood-2009-03-210179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mayne E, Funderburg NT, Sieg SF, Asaad R, Kalinowska M, Rodriguez B, et al. Increased platelet and microparticle activation in HIV infection: upregulation of P-selectin and tissue factor expression. J Acquir Immune Defic Syndr. 2012;59(4):340–6. doi:10.1097/QAI.0b013e3182439355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baker JV, Brummel-Ziedins K, Neuhaus J, Duprez D, Cummins N, Dalmau D, et al. HIV replication alters the composition of extrinsic pathway coagulation factors and increases thrombin generation. J Am Heart Assoc. 2013;2(4):e000264. doi:10.1161/JAHA.113.000264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dock JN, Effros RB. Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2011;2(5):382–97.

    PubMed  PubMed Central  Google Scholar 

  93. Appay V, Almeida JR, Sauce D, Autran B, Papagno L. Accelerated immune senescence and HIV-1 infection. Exp Gerontol. 2007;42(5):432–7. doi:10.1016/j.exger.2006.12.003.

    Article  CAS  PubMed  Google Scholar 

  94. Deeks SG, Verdin E, McCune JM. Immunosenescence and HIV. Curr Opin Immunol. 2012;24(4):501–6. doi:10.1016/j.coi.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  95. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101(7):2711–20. doi:10.1182/blood-2002-07-2103.

    Article  CAS  PubMed  Google Scholar 

  96. Kaplan RC, Sinclair E, Landay AL, Lurain N, Sharrett AR, Gange SJ, et al. T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women. J Infect Dis. 2011;203(4):452–63. doi:10.1093/infdis/jiq071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liuzzo G, Biasucci LM, Trotta G, Brugaletta S, Pinnelli M, Digianuario G, et al. Unusual CD4+CD28null T lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol. 2007;50(15):1450–8. doi:10.1016/j.jacc.2007.06.040.

    Article  CAS  PubMed  Google Scholar 

  98. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ, et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation. 2002;105(5):570–5.

    Article  CAS  PubMed  Google Scholar 

  99. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis Off Publ Infect Dis Soc Am. 2011;53(11):1120–6. doi:10.1093/cid/cir627.

    Article  Google Scholar 

  100. Lederman MM, Connick E, Landay A, Kuritzkes DR, Spritzler J, St Clair M, et al. Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J Infect Dis. 1998;178(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  101. Bisset LR, Cone RW, Huber W, Battegay M, Vernazza PL, Weber R, et al. Highly active antiretroviral therapy during early HIV infection reverses T-cell activation and maturation abnormalities. Swiss HIV Cohort Study. AIDS. 1998;12(16):2115–23.

    Article  CAS  PubMed  Google Scholar 

  102. Wada NI, Jacobson LP, Margolick JB, Breen EC, Macatangay B, Penugonda S, et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS. 2015;29(4):463–71. doi:10.1097/QAD.0000000000000545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Neuhaus J, Jacobs DR Jr, Baker JV, Calmy A, Duprez D, La Rosa A, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010;201(12):1788–95. doi:10.1086/652749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, et al. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis. 2003;187(10):1534–43. doi:10.1086/374786.

    Article  CAS  PubMed  Google Scholar 

  105. Mendez-Lagares G, Romero-Sanchez MC, Ruiz-Mateos E, Genebat M, Ferrando-Martinez S, Munoz-Fernandez MA, et al. Long-term suppressive combined antiretroviral treatment does not normalize the serum level of soluble CD14. J Infect Dis. 2013;207(8):1221–5. doi:10.1093/infdis/jit025.

    Article  CAS  PubMed  Google Scholar 

  106. Carr A, Samaras K, Burton S, Law M, Freund J, Chisholm DJ, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS. 1998;12(7):F51–8.

    Article  CAS  PubMed  Google Scholar 

  107. Brinkman K, Smeitink JA, Romijn JA, Reiss P. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet. 1999;354(9184):1112–5. doi:10.1016/S0140-6736(99)06102-4.

    Article  CAS  PubMed  Google Scholar 

  108. de Waal R, Cohen K, Maartens G. Systematic review of antiretroviral-associated lipodystrophy: lipoatrophy, but not central fat gain, is an antiretroviral adverse drug reaction. PLoS One. 2013;8(5):e63623. doi:10.1371/journal.pone.0063623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mynarcik DC, McNurlan MA, Steigbigel RT, Fuhrer J, Gelato MC. Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy. J Acquir Immune Defic Syndr. 2000;25(4):312–21.

    Article  CAS  PubMed  Google Scholar 

  110. Wohl D, Scherzer R, Heymsfield S, Simberkoff M, Sidney S, Bacchetti P, et al. The associations of regional adipose tissue with lipid and lipoprotein levels in HIV-infected men. J Acquir Immune Defic Syndr. 2008;48(1):44–52. doi:10.1097/QAI.0b013e31816d9ba1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Milinkovic A, Martinez E. Current perspectives on HIV-associated lipodystrophy syndrome. J Antimicrob Chemother. 2005;56(1):6–9. doi:10.1093/jac/dki165.

    Article  CAS  PubMed  Google Scholar 

  112. Palacios R, Santos J, Garcia A, Castells E, Gonzalez M, Ruiz J, et al. Impact of highly active antiretroviral therapy on blood pressure in HIV-infected patients. A prospective study in a cohort of naive patients. HIV Med. 2006;7(1):10–5. doi:10.1111/j.1468-1293.2005.00333.x.

    Article  CAS  PubMed  Google Scholar 

  113. Crane HM, Van Rompaey SE, Kitahata MM. Antiretroviral medications associated with elevated blood pressure among patients receiving highly active antiretroviral therapy. AIDS. 2006;20(7):1019–26. doi:10.1097/01.aids.0000222074.45372.00.

    Article  CAS  PubMed  Google Scholar 

  114. De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. Diabetes Care. 2008;31(6):1224–9. doi:10.2337/dc07-2013.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Capeau J, Bouteloup V, Katlama C, Bastard JP, Guiyedi V, Salmon-Ceron D, et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS. 2012;26(3):303–14. doi:10.1097/QAD.0b013e32834e8776.

    Article  CAS  PubMed  Google Scholar 

  116. Friis-Moller N, Weber R, Reiss P, Thiebaut R, Kirk O, Monforte ADA, et al. Cardiovascular disease risk factors in HIV patients—association with antiretroviral therapy. Results from the DAD study. AIDS. 2003;17(8):1179–93. doi:10.1097/01.aids.0000060358.78202.c1.

    Article  PubMed  Google Scholar 

  117. Haubrich RH, Riddler SA, DiRienzo AG, Komarow L, Powderly WG, Klingman K, et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS. 2009;23(9):1109–18. doi:10.1097/QAD.0b013e32832b4377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kelesidis T, Currier JS. Dyslipidemia and cardiovascular risk in human immunodeficiency virus infection. Endocrinol Metab Clin N Am. 2014;43(3):665–84. doi:10.1016/j.ecl.2014.06.003.

    Article  Google Scholar 

  119. Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104–16. doi:10.1038/nri3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zidar DA, Juchnowski S, Ferrari B, Clagett B, Pilch-Cooper HA, Rose S, et al. Oxidized LDL levels are increased in HIV infection and may drive monocyte activation. J Acquir Immune Defic Syndr. 2015;69(2):154–60. doi:10.1097/QAI.0000000000000566.

    Article  CAS  PubMed  Google Scholar 

  121. Nou E, Lu MT, Looby SE, Fitch KV, Kim EA, Lee H, et al. Serum oxidized low-density lipoprotein decreases in response to statin therapy and relates independently to reductions in coronary plaque in patients with HIV. AIDS. 2015. doi:10.1097/QAD.0000000000000946.

    Google Scholar 

  122. Strategies for Management of Antiretroviral Therapy Study G, El-Sadr WM, Lundgren J, Neaton JD, Gordin F, Abrams D, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355(22):2283–96. doi:10.1056/NEJMoa062360.

    Article  Google Scholar 

  123. Group ISS. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015. doi:10.1056/NEJMoa1506816.

    Google Scholar 

  124. Siedner MJ, Ng CK, Bassett IV, Katz IT, Bangsberg DR, Tsai AC. Trends in CD4 count at presentation to care and treatment initiation in sub-Saharan Africa, 2002–2013: a meta-analysis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(7):1120–7. doi:10.1093/cid/ciu1137.

    Google Scholar 

  125. UNAIDS. The Gap Report 2014. UN Joint Programme on HIV/AIDS (UNAIDS), Geneva. 2014. http://www.unaids.org/sites/default/files/media_asset/UNAIDS_Gap_report_en.pdf. Accessed 28 Oct 2015.

  126. Helleberg M, Afzal S, Kronborg G, Larsen CS, Pedersen G, Pedersen C, et al. Mortality attributable to smoking among HIV-1-infected individuals: a nationwide, population-based cohort study. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;56(5):727–34. doi:10.1093/cid/cis933.

    Article  Google Scholar 

  127. Aberg JA, Gallant JE, Ghanem KG, Emmanuel P, Zingman BS, Horberg MA, et al. Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;58(1):e1–34. doi:10.1093/cid/cit665.

    Article  Google Scholar 

  128. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934. doi:10.1016/j.jacc.2013.11.002.

  129. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J. 2012;33(13):1635–701. doi:10.1093/eurheartj/ehs092.

    Article  CAS  PubMed  Google Scholar 

  130. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. The Lancet. 2015.

  131. Cholesterol Treatment Trialists C, Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397–405. doi:10.1016/S0140-6736(14)61368-4.

    Article  CAS  Google Scholar 

  132. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article  CAS  PubMed  Google Scholar 

  133. Lake JE, Currier JS. Metabolic disease in HIV infection. Lancet Infect Dis. 2013;13(11):964–75. doi:10.1016/S1473-3099(13)70271-8.

    Article  PubMed  Google Scholar 

  134. Martin A, Smith DE, Carr A, Ringland C, Amin J, Emery S, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. AIDS. 2004;18(7):1029–36.

    Article  CAS  PubMed  Google Scholar 

  135. Moyle GJ, Sabin CA, Cartledge J, Johnson M, Wilkins E, Churchill D, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS. 2006;20(16):2043–50. doi:10.1097/01.aids.0000247574.33998.03.

    Article  CAS  PubMed  Google Scholar 

  136. Madruga JR, Cassetti I, Suleiman JM, Etzel A, Zhong L, Holmes CB, et al. The safety and efficacy of switching stavudine to tenofovir df in combination with lamivudine and efavirenz in HIV-1-infected patients: three-year follow-up after switching therapy. HIV Clin Trials. 2007;8(6):381–90. doi:10.1310/hct0806-381.

    Article  PubMed  Google Scholar 

  137. Rockstroh JK, DeJesus E, Lennox JL, Yazdanpanah Y, Saag MS, Wan H, et al. Durable efficacy and safety of raltegravir versus efavirenz when combined with tenofovir/emtricitabine in treatment-naive HIV-1-infected patients: final 5-year results from STARTMRK. J Acquir Immune Defic Syndr. 2013;63(1):77–85. doi:10.1097/QAI.0b013e31828ace69.

    Article  CAS  PubMed  Google Scholar 

  138. Eron JJ, Young B, Cooper DA, Youle M, Dejesus E, Andrade-Villanueva J, et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet. 2010;375(9712):396–407. doi:10.1016/S0140-6736(09)62041-9.

    Article  CAS  PubMed  Google Scholar 

  139. MacInnes A, Lazzarin A, Di Perri G, Sierra-Madero JG, Aberg J, Heera J, et al. Maraviroc can improve lipid profiles in dyslipidemic patients with HIV: results from the MERIT trial. HIV Clin Trials. 2011;12(1):24–36. doi:10.1310/hct1201-24.

    Article  CAS  PubMed  Google Scholar 

  140. Ucciferri C, Falasca K, Vignale F, Di Nicola M, Pizzigallo E, Vecchiet J. Improved metabolic profile after switch to darunavir/ritonavir in HIV positive patients previously on protease inhibitor therapy. J Med Virol. 2013;85(5):755–9. doi:10.1002/jmv.23543.

    Article  CAS  PubMed  Google Scholar 

  141. Mills AM, Nelson M, Jayaweera D, Ruxrungtham K, Cassetti I, Girard PM, et al. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. AIDS. 2009;23(13):1679–88. doi:10.1097/QAD.0b013e32832d7350.

    Article  CAS  PubMed  Google Scholar 

  142. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19(5):557–66. doi:10.1038/nm.3159.

    Article  CAS  PubMed  Google Scholar 

  143. Edgeworth A, Treacy MP, Hurst TP. Thiazolidinediones in the treatment of HIV/HAART-associated lipodystrophy syndrome. AIDS Rev. 2013;15(3):171–80.

    PubMed  Google Scholar 

  144. Raboud JM, Diong C, Carr A, Grinspoon S, Mulligan K, Sutinen J, et al. A meta-analysis of six placebo-controlled trials of thiazolidinedione therapy for HIV lipoatrophy. HIV Clin Trials. 2010;11(1):39–50. doi:10.1310/hct1101-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Slama L, Lanoy E, Valantin MA, Bastard JP, Chermak A, Boutekatjirt A, et al. Effect of pioglitazone on HIV-1-related lipodystrophy: a randomized double-blind placebo-controlled trial (ANRS 113). Antivir Ther. 2008;13(1):67–76.

    CAS  PubMed  Google Scholar 

  146. Nagy GS, Tsiodras S, Martin LD, Avihingsanon A, Gavrila A, Hsu WC, et al. Human immunodeficiency virus type 1-related lipoatrophy and lipohypertrophy are associated with serum concentrations of leptin. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;36(6):795–802. doi:10.1086/367859.

    Article  CAS  Google Scholar 

  147. Magkos F, Brennan A, Sweeney L, Kang ES, Doweiko J, Karchmer AW, et al. Leptin replacement improves postprandial glycemia and insulin sensitivity in human immunodeficiency virus-infected lipoatrophic men treated with pioglitazone: a pilot study. Metab Clin Exp. 2011;60(7):1045–9. doi:10.1016/j.metabol.2010.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee JH, Chan JL, Sourlas E, Raptopoulos V, Mantzoros CS. Recombinant methionyl human leptin therapy in replacement doses improves insulin resistance and metabolic profile in patients with lipoatrophy and metabolic syndrome induced by the highly active antiretroviral therapy. J Clin Endocrinol Metab. 2006;91(7):2605–11. doi:10.1210/jc.2005-1545.

    Article  CAS  PubMed  Google Scholar 

  149. Mulligan K, Khatami H, Schwarz JM, Sakkas GK, DePaoli AM, Tai VW, et al. The effects of recombinant human leptin on visceral fat, dyslipidemia, and insulin resistance in patients with human immunodeficiency virus-associated lipoatrophy and hypoleptinemia. J Clin Endocrinol Metab. 2009;94(4):1137–44. doi:10.1210/jc.2008-1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Havlir DV, Bassett R, Levitan D, Gilbert P, Tebas P, Collier AC, et al. Prevalence and predictive value of intermittent viremia with combination hiv therapy. JAMA. 2001;286(2):171–9 (pii: joc01773).

    Article  CAS  PubMed  Google Scholar 

  151. Zheng L, Taiwo B, Gandhi RT, Hunt PW, Collier AC, Flexner C, et al. Factors associated with CD8+ T-cell activation in HIV-1-infected patients on long-term antiretroviral therapy. J Acquir Immune Defic Syndr. 2014;67(2):153–60. doi:10.1097/QAI.0000000000000286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Armah KA, McGinnis K, Baker J, Gibert C, Butt AA, Bryant KJ, et al. HIV status, burden of comorbid disease, and biomarkers of inflammation, altered coagulation, and monocyte activation. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;55(1):126–36. doi:10.1093/cid/cis406.

    Article  CAS  Google Scholar 

  153. Mavigner M, Delobel P, Cazabat M, Dubois M, L’Faqihi-Olive FE, Raymond S, et al. HIV-1 residual viremia correlates with persistent T-cell activation in poor immunological responders to combination antiretroviral therapy. PLoS One. 2009;4(10):e7658. doi:10.1371/journal.pone.0007658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ostrowski SR, Katzenstein TL, Pedersen BK, Gerstoft J, Ullum H. Residual viraemia in HIV-1-infected patients with plasma viral load <or=20 copies/ml is associated with increased blood levels of soluble immune activation markers. Scand J Immunol. 2008;68(6):652–60. doi:10.1111/j.1365-3083.2008.02184.x.

    Article  CAS  PubMed  Google Scholar 

  155. Gandhi RT, Zheng L, Bosch RJ, Chan ES, Margolis DM, Read S, et al. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med. 2010;7(8). doi:10.1371/journal.pmed.1000321.

  156. Hatano H, Hayes TL, Dahl V, Sinclair E, Lee TH, Hoh R, et al. A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response. J Infect Dis. 2011;203(7):960–8. doi:10.1093/infdis/jiq138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yukl SA, Shergill AK, McQuaid K, Gianella S, Lampiris H, Hare CB, et al. Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS. 2010;24(16):2451–60. doi:10.1097/QAD.0b013e32833ef7bb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dahl V, Lee E, Peterson J, Spudich SS, Leppla I, Sinclair E, et al. Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoactivation in subjects on suppressive therapy. J Infect Dis. 2011;204(12):1936–45. doi:10.1093/infdis/jir667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Llibre JM, Buzon MJ, Massanella M, Esteve A, Dahl V, Puertas MC, et al. Treatment intensification with raltegravir in subjects with sustained HIV-1 viraemia suppression: a randomized 48-week study. Antivir Ther. 2012;17(2):355–64. doi:10.3851/IMP1917.

    Article  CAS  PubMed  Google Scholar 

  160. Vallejo A, Gutierrez C, Hernandez-Novoa B, Diaz L, Madrid N, Abad-Fernandez M, et al. The effect of intensification with raltegravir on the HIV-1 reservoir of latently infected memory CD4 T cells in suppressed patients. AIDS. 2012;26(15):1885–94. doi:10.1097/QAD.0b013e3283584521.

    Article  CAS  PubMed  Google Scholar 

  161. Byakwaga H, Kelly M, Purcell DF, French MA, Amin J, Lewin SR, et al. Intensification of antiretroviral therapy with raltegravir or addition of hyperimmune bovine colostrum in HIV-infected patients with suboptimal CD4+ T-cell response: a randomized controlled trial. J Infect Dis. 2011;204(10):1532–40. doi:10.1093/infdis/jir559.

    Article  CAS  PubMed  Google Scholar 

  162. Markowitz M, Evering TH, Garmon D, Caskey M, La Mar M, Rodriguez K, et al. A randomized open-label study of 3- versus 5-drug combination antiretroviral therapy in newly HIV-1-infected individuals. J Acquir Immune Defic Syndr. 2014;66(2):140–7. doi:10.1097/QAI.0000000000000111.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hatano H, Strain MC, Scherzer R, Bacchetti P, Wentworth D, Hoh R, et al. Increase in 2-LTR circles and decrease in D-dimer after raltegravir intensification in treated HIV-infected patients: a randomized, Placebo-Controlled Trial. J Infect Dis. 2013. doi:10.1093/infdis/jit453.

    Google Scholar 

  164. Massanella M, Negredo E, Puig J, Puertas MC, Buzon MJ, Perez-Alvarez N, et al. Raltegravir intensification shows differing effects on CD8 and CD4 T cells in HIV-infected HAART-suppressed individuals with poor CD4 T-cell recovery. AIDS. 2012;26(18):2285–93. doi:10.1097/QAD.0b013e328359f20f.

    Article  CAS  PubMed  Google Scholar 

  165. Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, Puertas MC, et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med. 2010;16(4):460–5. doi:10.1038/nm.2111.

    Article  PubMed  CAS  Google Scholar 

  166. Cuzin L, Trabelsi S, Delobel P, Barbuat C, Reynes J, Allavena C, et al. Maraviroc intensification of stable antiviral therapy in HIV-1-infected patients with poor immune restoration: MARIMUNO-ANRS 145 study. J Acquir Immune Defic Syndr. 2012;61(5):557–64. doi:10.1097/QAI.0b013e318273015f.

    Article  CAS  PubMed  Google Scholar 

  167. Wilkin TJ, Lalama CM, McKinnon J, Gandhi RT, Lin N, Landay A, et al. A pilot trial of adding maraviroc to suppressive antiretroviral therapy for suboptimal CD4(+) T-cell recovery despite sustained virologic suppression: ACTG A5256. J Infect Dis. 2012;206(4):534–42. doi:10.1093/infdis/jis376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gutierrez C, Diaz L, Vallejo A, Hernandez-Novoa B, Abad M, Madrid N, et al. Intensification of antiretroviral therapy with a CCR5 antagonist in patients with chronic HIV-1 infection: effect on T cells latently infected. PLoS One. 2011;6(12):e27864. doi:10.1371/journal.pone.0027864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. van Lelyveld SF, Drylewicz J, Krikke M, Veel EM, Otto SA, Richter C, et al. Maraviroc intensification of cART in patients with suboptimal immunological recovery: a 48-week, Placebo-Controlled Randomized Trial. PLoS One. 2015;10(7):e0132430. doi:10.1371/journal.pone.0132430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Hunt PW, Shulman NS, Hayes TL, Dahl V, Somsouk M, Funderburg NT, et al. The immunologic effects of maraviroc intensification in treated HIV-infected individuals with incomplete CD4+ T-cell recovery: a randomized trial. Blood. 2013;121(23):4635–46. doi:10.1182/blood-2012-06-436345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kushner LE, Wendelboe AM, Lazzeroni LC, Chary A, Winters MA, Osinusi A, et al. Immune biomarker differences and changes comparing HCV mono-infected, HIV/HCV co-infected, and HCV spontaneously cleared patients. PLoS One. 2013;8(4):e60387. doi:10.1371/journal.pone.0060387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chew KW, Hua L, Bhattacharya D, Butt AA, Bornfleth L, Chung RT, et al. The effect of hepatitis C virologic clearance on cardiovascular disease biomarkers in human immunodeficiency virus/hepatitis C virus coinfection. Open Forum Infect Dis. 2014;1(3):ofu104. doi:10.1093/ofid/ofu104.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Berenguer J, Alvarez-Pellicer J, Martin PM, Lopez-Aldeguer J, Von-Wichmann MA, Quereda C, et al. Sustained virological response to interferon plus ribavirin reduces liver-related complications and mortality in patients coinfected with human immunodeficiency virus and hepatitis C virus. Hepatology. 2009;50(2):407–13. doi:10.1002/hep.23020.

    Article  CAS  PubMed  Google Scholar 

  174. Berenguer J, Rodriguez E, Miralles P, Von Wichmann MA, Lopez-Aldeguer J, Mallolas J, et al. Sustained virological response to interferon plus ribavirin reduces non-liver-related mortality in patients coinfected with HIV and Hepatitis C virus. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;55(5):728–36. doi:10.1093/cid/cis500.

    Article  CAS  Google Scholar 

  175. Molina JM, Orkin C, Iser DM, Zamora FX, Nelson M, Stephan C, et al. Sofosbuvir plus ribavirin for treatment of hepatitis C virus in patients co-infected with HIV (PHOTON-2): a multicentre, open-label, non-randomised, phase 3 study. Lancet. 2015;385(9973):1098–106. doi:10.1016/S0140-6736(14)62483-1.

    Article  CAS  PubMed  Google Scholar 

  176. Naggie S, Cooper C, Saag M, Workowski K, Ruane P, Towner WJ, et al. Ledipasvir and Sofosbuvir for HCV in Patients Coinfected with HIV-1. N Engl J Med. 2015. doi:10.1056/NEJMoa1501315.

    PubMed  Google Scholar 

  177. Sulkowski MS, Naggie S, Lalezari J, Fessel WJ, Mounzer K, Shuhart M, et al. Sofosbuvir and ribavirin for hepatitis C in patients with HIV coinfection. JAMA. 2014;312(4):353–61. doi:10.1001/jama.2014.7734.

    Article  PubMed  CAS  Google Scholar 

  178. Hill A, Cooke G. Medicine. Hepatitis C can be cured globally, but at what cost? Science. 2014;345(6193):141–2. doi:10.1126/science.1257737.

    Article  CAS  PubMed  Google Scholar 

  179. Hunt PW, Martin JN, Sinclair E, Epling L, Teague J, Jacobson MA, et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis. 2011;203(10):1474–83. doi:10.1093/infdis/jir060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366(9493):1267–78. doi:10.1016/S0140-6736(05)67394-1.

    Article  CAS  PubMed  Google Scholar 

  181. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–87. doi:10.1038/nrd1901.

    Article  CAS  PubMed  Google Scholar 

  182. Funderburg NT, Jiang Y, Debanne SM, Storer N, Labbato D, Clagett B, et al. Rosuvastatin treatment reduces markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013. doi:10.1093/cid/cit748.

    Google Scholar 

  183. Funderburg NT, Jiang Y, Debanne SM, Labbato D, Juchnowski S, Ferrari B, et al. Rosuvastatin reduces vascular inflammation and T-cell and monocyte activation in HIV-infected subjects on antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;68(4):396–404. doi:10.1097/QAI.0000000000000478.

    Article  CAS  PubMed  Google Scholar 

  184. Aslangul E, Fellahi S, Assoumou LK, Bastard JP, Capeau J, Costagliola D. High-sensitivity C-reactive protein levels fall during statin therapy in HIV-infected patients receiving ritonavir-boosted protease inhibitors. AIDS. 2011;25(8):1128–31. doi:10.1097/QAD.0b013e328346be29.

    Article  CAS  PubMed  Google Scholar 

  185. De Wit S, Delforge M, Necsoi CV, Clumeck N. Downregulation of CD38 activation markers by atorvastatin in HIV patients with undetectable viral load. AIDS. 2011;25(10):1332–3. doi:10.1097/QAD.0b013e328347c083.

    Article  PubMed  CAS  Google Scholar 

  186. Lo J, Lu MT, Ihenachor EJ, Wei J, Looby SE, Fitch KV, et al. Effects of statin therapy on coronary artery plaque volume and high-risk plaque morphology in HIV-infected patients with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Lancet HIV. 2015;2(2):e52–63.

    Article  PubMed  Google Scholar 

  187. Moore RD, Bartlett JG, Gallant JE. Association between use of HMG CoA reductase inhibitors and mortality in HIV-infected patients. PLoS One. 2011;6(7):e21843. doi:10.1371/journal.pone.0021843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Lang S, Lacombe JM, Mary-Krause M, Partisani M, Bidegain F, Cotte L, et al. Is impact of statin therapy on all-cause mortality different in HIV-infected individuals compared to general population? Results from the FHDH-ANRS CO4 cohort. PLoS One. 2015;10(7):e0133358. doi:10.1371/journal.pone.0133358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol. 2012;42(2):145–53. doi:10.1007/s12016-010-8243-x.

    Article  CAS  PubMed  Google Scholar 

  190. Savarino A, Gennero L, Sperber K, Boelaert JR. The anti-HIV-1 activity of chloroquine. J Clin Virol. 2001;20(3):131–5 (pii: S1386-6532(00)00139-6).

    Article  CAS  PubMed  Google Scholar 

  191. Sperber K, Chiang G, Chen H, Ross W, Chusid E, Gonchar M, et al. Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1. Clin Ther. 1997;19(5):913–23 (pii: S0149-2918(97)80045-8).

    Article  CAS  PubMed  Google Scholar 

  192. Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, Argenteri B, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood. 2011;118(12):3263–72. doi:10.1182/blood-2011-01-329060.

    Article  CAS  PubMed  Google Scholar 

  193. Routy JP, Angel JB, Patel M, Kanagaratham C, Radzioch D, Kema I, et al. Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med. 2015;16(1):48–56. doi:10.1111/hiv.12171.

    Article  CAS  PubMed  Google Scholar 

  194. Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373(9678):1849–60. doi:10.1016/S0140-6736(09)60503-1.

    Article  PubMed  CAS  Google Scholar 

  195. O’Brien M, Montenont E, Hu L, Nardi MA, Valdes V, Merolla M, et al. Aspirin attenuates platelet activation and immune activation in HIV-1-infected subjects on antiretroviral therapy: a pilot study. J Acquir Immune Defic Syndr. 2013;63(3):280–8. doi:10.1097/QAI.0b013e31828a292c.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol. 2002;23(3):144–50 (pii: S1471490601021548).

    Article  CAS  PubMed  Google Scholar 

  197. Pettersen FO, Torheim EA, Dahm AE, Aaberge IS, Lind A, Holm M, et al. An exploratory trial of cyclooxygenase type 2 inhibitor in HIV-1 infection: downregulated immune activation and improved T cell-dependent vaccine responses. J Virol. 2011;85(13):6557–66. doi:10.1128/JVI.00073-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kvale D, Ormaasen V, Kran AM, Johansson CC, Aukrust P, Aandahl EM, et al. Immune modulatory effects of cyclooxygenase type 2 inhibitors in HIV patients on combination antiretroviral treatment. AIDS. 2006;20(6):813–20. doi:10.1097/01.aids.0000218544.54586.f1.

    Article  CAS  PubMed  Google Scholar 

  199. Cannon CP, Cannon PJ. Physiology. COX-2 inhibitors and cardiovascular risk. Science. 2012;336(6087):1386–7. doi:10.1126/science.1224398.

    Article  CAS  PubMed  Google Scholar 

  200. McComsey GA, Whalen CC, Mawhorter SD, Asaad R, Valdez H, Patki AH, et al. Placebo-controlled trial of prednisone in advanced HIV-1 infection. AIDS. 2001;15(3):321–7.

    Article  CAS  PubMed  Google Scholar 

  201. Wallis RS, Kalayjian R, Jacobson JM, Fox L, Purdue L, Shikuma CM, et al. A study of the immunology, virology, and safety of prednisone in HIV-1-infected subjects with CD4 cell counts of 200 to 700 mm(-3). J Acquir Immune Defic Syndr. 2003;32(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  202. Da Silva JA, Jacobs JW, Kirwan JR, Boers M, Saag KG, Ines LB, et al. Safety of low dose glucocorticoid treatment in rheumatoid arthritis: published evidence and prospective trial data. Ann Rheum Dis. 2006;65(3):285–93. doi:10.1136/ard.2005.038638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Miller KD, Masur H, Jones EC, Joe GO, Rick ME, Kelly GG, et al. High prevalence of osteonecrosis of the femoral head in HIV-infected adults. Ann Intern Med. 2002;137(1):17–25.

    Article  PubMed  Google Scholar 

  204. Cassol E, Malfeld S, Mahasha P, van der Merwe S, Cassol S, Seebregts C, et al. Persistent microbial translocation and immune activation in HIV-1-infected South Africans receiving combination antiretroviral therapy. J Infect Dis. 2010;202(5):723–33. doi:10.1086/655229.

    Article  CAS  PubMed  Google Scholar 

  205. Jiang W, Lederman MM, Hunt P, Sieg SF, Haley K, Rodriguez B, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis. 2009;199(8):1177–85. doi:10.1086/597476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Martin DM, Boys CW, Ruf W. Tissue factor: molecular recognition and cofactor function. FASEB J. 1995;9(10):852–9.

    CAS  PubMed  Google Scholar 

  207. Roberfroid M. Prebiotics: the concept revisited. J Nutr. 2007;137(3 Suppl 2):830S–7S (pii: 137/3/830S).

    CAS  PubMed  Google Scholar 

  208. Sanders ME. Probiotics: definition, sources, selection, and uses. Clin Infect Dis Off Publ Infect Dis Soc Am. 2008;46(Suppl 2):S58–61. doi:10.1086/523341.

    Article  Google Scholar 

  209. Gori A, Rizzardini G, Van’t Land B, Amor KB, van Schaik J, Torti C, et al. Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “COPA” pilot randomized trial. Mucosal Immunol. 2011;4(5):554–63. doi:10.1038/mi.2011.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Villar-Garcia J, Hernandez JJ, Guerri-Fernandez R, Gonzalez A, Lerma E, Guelar A, et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients: a double-blind, randomized, placebo-controlled trial. J Acquir Immune Defic Syndr. 2015;68(3):256–63. doi:10.1097/QAI.0000000000000468.

    Article  PubMed  Google Scholar 

  211. Schunter M, Chu H, Hayes TL, McConnell D, Crawford SS, Luciw PA, et al. Randomized pilot trial of a synbiotic dietary supplement in chronic HIV-1 infection. BMC Complement Altern Med. 2012;12:84. doi:10.1186/1472-6882-12-84.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Floren CH, Chinenye S, Elfstrand L, Hagman C, Ihse I. ColoPlus, a new product based on bovine colostrum, alleviates HIV-associated diarrhoea. Scand J Gastroenterol. 2006;41(6):682–6. doi:10.1080/00365520500380817.

    Article  PubMed  Google Scholar 

  213. Plettenberg A, Stoehr A, Stellbrink HJ, Albrecht H, Meigel W. A preparation from bovine colostrum in the treatment of HIV-positive patients with chronic diarrhea. Clin Investig. 1993;71(1):42–5.

    Article  CAS  PubMed  Google Scholar 

  214. Rump JA, Arndt R, Arnold A, Bendick C, Dichtelmuller H, Franke M, et al. Treatment of diarrhoea in human immunodeficiency virus-infected patients with immunoglobulins from bovine colostrum. Clin Investig. 1992;70(7):588–94.

    Article  CAS  PubMed  Google Scholar 

  215. Jiang ZD, DuPont HL. Rifaximin: in vitro and in vivo antibacterial activity—a review. Chemotherapy. 2005;51(Suppl 1):67–72. doi:10.1159/000081991.

    Article  CAS  PubMed  Google Scholar 

  216. Festi D, Mazzella G, Orsini M, Sottili S, Sangermano A, Li Bassi S, et al. Rifaximin in the treatment of chronic hepatic encephalopathy; results of a multicenter study of efficacy and safety. Curr Ther Res. 1993;54(5):598–609.

    Article  Google Scholar 

  217. Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–81. doi:10.1056/NEJMoa0907893.

    Article  CAS  PubMed  Google Scholar 

  218. Tenorio AR, Chan ES, Bosch RJ, Macatangay BJ, Read SW, Yesmin S, et al. Rifaximin has a marginal impact on microbial translocation, T-cell activation and inflammation in HIV-positive immune non-responders to antiretroviral therapy—ACTG A5286. J Infect Dis. 2015;211(5):780–90. doi:10.1093/infdis/jiu515.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Manns B, Stevens L, Miskulin D, Owen WF Jr, Winkelmayer WC, Tonelli M. A systematic review of sevelamer in ESRD and an analysis of its potential economic impact in Canada and the United States. Kidney Int. 2004;66(3):1239–47. doi:10.1111/j.1523-1755.2004.00877.x.

    Article  CAS  PubMed  Google Scholar 

  220. Stinghen AE, Goncalves SM, Bucharles S, Branco FS, Gruber B, Hauser AB, et al. Sevelamer decreases systemic inflammation in parallel to a reduction in endotoxemia. Blood Purif. 2010;29(4):352–6. doi:10.1159/000302723.

    Article  CAS  PubMed  Google Scholar 

  221. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Donate-Correa J, Cazana-Perez V, Garcia-Perez J. Effect of phosphate binders on serum inflammatory profile, soluble CD14, and endotoxin levels in hemodialysis patients. Clin J Am Soc Nephrol. 2011;6(9):2272–9. doi:10.2215/CJN.01650211.

  222. Kristoff J, Haret-Richter G, Ma D, Ribeiro RM, Xu C, Cornell E, et al. Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication. J Clin Investig. 2014;124(6):2802–6. doi:10.1172/JCI75090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Sandler NG, Zhang X, Bosch RJ, Funderburg NT, Choi AI, Robinson JK, et al. Sevelamer does not decrease lipopolysaccharide or soluble CD14 levels but decreases soluble tissue factor, low-density lipoprotein (LDL) cholesterol, and oxidized LDL cholesterol levels in individuals with untreated HIV infection. J Infect Dis. 2014;210(10):1549–54. doi:10.1093/infdis/jiu305.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ambizas EM, Ginzburg R. Lubiprostone: a chloride channel activator for treatment of chronic constipation. Ann Pharmacother. 2007;41(6):957–64. doi:10.1345/aph.1K047.

    Article  CAS  PubMed  Google Scholar 

  225. Moeser AJ, Nighot PK, Engelke KJ, Ueno R, Blikslager AT. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G647–56. doi:10.1152/ajpgi.00183.2006.

    Article  CAS  PubMed  Google Scholar 

  226. Burger D, Travis S. Conventional medical management of inflammatory bowel disease. Gastroenterology. 2011;140(6):1827–37 e2. doi:10.1053/j.gastro.2011.02.045.

  227. Somsouk M, Dunham RM, Cohen M, Albright R, Abdel-Mohsen M, Liegler T, et al. The immunologic effects of mesalamine in treated HIV-infected individuals with incomplete CD4+ T cell recovery: a randomized crossover trial. PLoS One. 2014;9(12):e116306. doi:10.1371/journal.pone.0116306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Sereti I, Anthony KB, Martinez-Wilson H, Lempicki R, Adelsberger J, Metcalf JA, et al. IL-2-induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood. 2004;104(3):775–80. doi:10.1182/blood-2003-12-4355.

    Article  CAS  PubMed  Google Scholar 

  229. Abrams D, Levy Y, Losso MH, Babiker A, Collins G, Cooper DA, et al. Interleukin-2 therapy in patients with HIV infection. N Engl J Med. 2009;361(16):1548–59. doi:10.1056/NEJMoa0903175.

    Article  CAS  PubMed  Google Scholar 

  230. Sereti I, Dunham RM, Spritzler J, Aga E, Proschan MA, Medvik K, et al. IL-7 administration drives T cell-cycle entry and expansion in HIV-1 infection. Blood. 2009;113(25):6304–14. doi:10.1182/blood-2008-10-186601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Lelievre JD, et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Investig. 2009;119(4):997–1007. doi:10.1172/JCI38052.

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Levy Y, Sereti I, Tambussi G, Routy JP, Lelievre JD, Delfraissy JF, et al. Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;55(2):291–300. doi:10.1093/cid/cis383.

    Article  CAS  Google Scholar 

  233. Pallikkuth S, Micci L, Ende ZS, Iriele RI, Cervasi B, Lawson B, et al. Maintenance of intestinal Th17 cells and reduced microbial translocation in SIV-infected rhesus macaques treated with interleukin (IL)-21. PLoS Pathog. 2013;9(7):e1003471. doi:10.1371/journal.ppat.1003471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Tabb B, Morcock DR, Trubey CM, Quinones OA, Hao XP, Smedley J, et al. Reduced inflammation and lymphoid tissue immunopathology in rhesus macaques receiving anti-tumor necrosis factor treatment during primary simian immunodeficiency virus infection. J Infect Dis. 2013;207(6):880–92. doi:10.1093/infdis/jis643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Solovic I, Sester M, Gomez-Reino JJ, Rieder HL, Ehlers S, Milburn HJ, et al. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement. Eur Respir J. 2010;36(5):1185–206. doi:10.1183/09031936.00028510.

    Article  CAS  PubMed  Google Scholar 

  236. Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Investig. 2011;121(3):998–1008. doi:10.1172/JCI45157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Macias-Barragan J, Sandoval-Rodriguez A, Navarro-Partida J, Armendariz-Borunda J. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair. 2010;3:16. doi:10.1186/1755-1536-3-16.

    PubMed  PubMed Central  Google Scholar 

  238. Estes JD, Reilly C, Trubey CM, Fletcher CV, Cory TJ, Piatak M Jr, et al. Antifibrotic therapy in simian immunodeficiency virus infection preserves CD4+ T-cell populations and improves immune reconstitution with antiretroviral therapy. J Infect Dis. 2015;211(5):744–54. doi:10.1093/infdis/jiu519.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52(1):11–34.

    CAS  PubMed  Google Scholar 

  240. Abbas G, Silveira MG, Lindor KD. Hepatic fibrosis and the renin-angiotensin system. Am J Ther. 2011;18(6):e202–8. doi:10.1097/MJT.0b013e3181df8df5.

    Article  PubMed  Google Scholar 

  241. Baker JV, Huppler Hullsiek K, Prosser R, Duprez D, Grimm R, Tracy RP, et al. Angiotensin converting enzyme inhibitor and HMG-CoA reductase inhibitor as adjunct treatment for persons with HIV infection: a feasibility randomized trial. PLoS One. 2012;7(10):e46894. doi:10.1371/journal.pone.0046894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irini Sereti.

Ethics declarations

Funding

The work of the authors was supported by the intramural research program of NIAID/NIH. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, D.C., Sereti, I. Serious Non-AIDS Events: Therapeutic Targets of Immune Activation and Chronic Inflammation in HIV Infection. Drugs 76, 533–549 (2016). https://doi.org/10.1007/s40265-016-0546-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-016-0546-7

Keywords

Navigation