Skip to main content
Log in

The Role of Anti-PD-1/PD-L1 Agents in Melanoma: Progress to Date

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The discovery of immune inhibitory checkpoints has revolutionized the approach to the systemic treatment of cancer. The programmed death 1 (PD-1) inhibitory checkpoint, in particular, has played a key role in understanding how certain cancers can evade immune surveillance. Blocking the interaction between the PD-1 receptor and its primary ligand (PD-L1) has demonstrated remarkable anti-cancer activity, and has led to the recent accelerated approval of two anti-PD-1 drugs for use in unresectable and metastatic melanoma in the USA. Results of these therapeutic advances have solidified the role of immunotherapy in the treatment of melanoma, results that may be applicable to the treatment of other cancers. In this review, we discuss the role of the PD-1 pathway in the immune system and the anti-cancer mechanism of action of inhibiting the PD-1/PD-L1 interaction. We also review the efficacy and safety data of currently approved and in-development anti-PD-1 agents, and explore the next steps to further improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couzin-Frankel J. Cancer Immunotherapy. Science. 2013;342:1432–3. doi:10.1126/science.342.6165.1432.

    Article  CAS  PubMed  Google Scholar 

  2. Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol. 1987;138:989–95.

    CAS  PubMed  Google Scholar 

  3. Benlalam H, Labarrière N, Linard B, Derré L, Diez E, Pandolfino M-C, et al. Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol. 2001;31:2007–15. doi:10.1002/1521-4141(200107)31:7<2007:AID-IMMU2007>3.0.CO;2-S.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. New Engl J Med. 1988;319:1676–80. doi:10.1056/NEJM198812223192527.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994;86:1159–66. doi:10.1093/jnci/86.15.1159.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21:233–40. doi:10.1016/j.coi.2009.03.002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA. 1994;271:907–13.

    Article  CAS  PubMed  Google Scholar 

  8. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol. 1996;14:7–17.

    CAS  PubMed  Google Scholar 

  9. FDA approves new treatment for a type of late-stage skin cancer. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm1193237.htm. Accessed 7 Jan 2015.

  10. Hanaizi Z, van Zwieten-Boot B, Calvo G, Lopez AS, van Dartel M, Camarero J, et al. The European Medicines Agency review of ipilimumab (Yervoy) for the treatment of advanced (unresectable or metastatic) melanoma in adults who have received prior therapy: summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Eur J Cancer. 2012;48:237–42. doi:10.1016/j.ejca.2011.09.018.

    Article  CAS  PubMed  Google Scholar 

  11. Administration AGD of HTG. AusPAR: Ipilimumab. Therapeutic Goods Administration (TGA). 2011. http://www.tga.gov.au/auspar/auspar-ipilimumab. Accessed 7 Jan 2015.

  12. Government of Canada HC. Summary Basis of Decision (SBD): Yervoy—2012—Health Canada. 2012. http://www.hc-sc.gc.ca/dhp-mps/prodpharma/sbd-smd/drug-med/sbd_smd_2012_yervoy_138178-eng.php. Accessed 7 Jan 2015.

  13. Bristol-Myers Squibb and Ono Pharmaceutical Co., Ltd. announce Strategic Immuno-Oncology Collaboration in Japan, South Korea and Taiwan|BMS Newsroom. http://news.bms.com/press-release/rd-news/bristol-myers-squibb-and-ono-pharmaceutical-co-ltd-announce-strategic-immuno-o. Accessed 7 Jan 2015.

  14. FDA approves Opdivo for advanced melanoma. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427716.htm. Accessed 7 Jan 2015.

  15. Research C for DE and. Approved drugs—pembrolizumab. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm412861.htm. Accessed 7 Jan 2015.

  16. Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol. 2011;3:17–30. doi:10.1039/C0IB00046A.

    Article  CAS  Google Scholar 

  17. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10. doi:10.1016/j.immuni.2013.07.012.

    Article  PubMed  Google Scholar 

  18. Ferguson TA, Choi J, Green DR. Armed response: how dying cells influence T-cell functions. Immunol Rev. 2011;241:77–88. doi:10.1111/j.1600-065X.2011.01006.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Babcock SK, Gill RG, Bellgrau D, Lafferty KJ. Studies on the two-signal model for T cell activation in vivo. Transplant Proc. 1987;19:303–6.

    CAS  PubMed  Google Scholar 

  20. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol. 2002;2:116–26. doi:10.1038/nri727.

    Article  CAS  PubMed  Google Scholar 

  21. Sloan-Lancaster J, Evavold BD, Allen PM. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature. 1993;363:156–9. doi:10.1038/363156a0.

    Article  CAS  PubMed  Google Scholar 

  22. Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science. 1996;273:104–6. doi:10.1126/science.273.5271.104.

    Article  CAS  PubMed  Google Scholar 

  23. Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology. 2000;101:169–77. doi:10.1046/j.1365-2567.2000.00121.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi:10.1146/annurev.immunol.26.021607.090331.

    Article  CAS  PubMed  Google Scholar 

  25. Brunet J-F, Denizot F, Luciani M-F, Roux-Dosseto M, Suzan M, Mattei M-G, et al. A new member of the immunoglobulin superfamily: CTLA-4. Nature. 1987;328:267–70. doi:10.1038/328267a0.

    Article  CAS  PubMed  Google Scholar 

  26. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991;174:561–9. doi:10.1084/jem.174.3.561.

    Article  CAS  PubMed  Google Scholar 

  27. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3:541–7.

    Article  CAS  PubMed  Google Scholar 

  28. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4:535–43. doi:10.1016/S1074-7613(00)80480-X.

    Article  CAS  PubMed  Google Scholar 

  29. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family. Immunol Rev. 2011;241:180–205. doi:10.1111/j.1600-065X.2011.01011.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Walker LSK. Treg and CTLA-4: Two intertwining pathways to immune tolerance. J Autoimmun. 2013;45:49–57. doi:10.1016/j.jaut.2013.06.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. doi:10.1056/NEJMoa1003466.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in metastatic or locally advanced, unresectable melanoma. In: Presented at: European Cancer Congress 2013 (ECCO-ESMO-ESTRO); September 27–October 1, 2013; Amsterdam, The Netherlands. Abstract 24.

  33. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Nishimura H, Agata Y, Kawasaki A, Sato M, Imamura S, Minato N, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative(CD4–CD8–) thymocytes. Int Immunol. 1996;8:773–80. doi:10.1093/intimm/8.5.773.

    Article  CAS  PubMed  Google Scholar 

  35. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the Pd-1 Immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34. doi:10.1084/jem.192.7.1027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8. doi:10.1038/85330.

    Article  CAS  PubMed  Google Scholar 

  37. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol. 2002;169:5538–45.

    Article  CAS  PubMed  Google Scholar 

  38. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 Associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173:945–54. doi:10.4049/jimmunol.173.2.945.

    Article  CAS  PubMed  Google Scholar 

  39. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. PNAS. 2001;98:13866–71. doi:10.1073/pnas.231486598.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sheppard K-A, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Lett. 2004;574:37–41. doi:10.1016/j.febslet.2004.07.083.

    Article  CAS  PubMed  Google Scholar 

  41. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006;203:883–95. doi:10.1084/jem.20051776.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14:1212–8. doi:10.1038/ni.2762.

    Article  CAS  PubMed  Google Scholar 

  43. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–53. doi:10.1128/MCB.25.21.9543-9553.2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ansari MJI, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med. 2003;198:63–9. doi:10.1084/jem.20022125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Fife BT, Guleria I, Bupp MG, Eagar TN, Tang Q, Bour-Jordan H, et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J Exp Med. 2006;203:2737–47. doi:10.1084/jem.20061577.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. PNAS. 2005;102:11823–8. doi:10.1073/pnas.0505497102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51. doi:10.1016/S1074-7613(00)80089-8.

    Article  CAS  PubMed  Google Scholar 

  48. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319–22. doi:10.1126/science.291.5502.319.

    Article  CAS  PubMed  Google Scholar 

  49. Strausberg RL. Tumor microenvironments, the immune system and cancer survival. Genome Biol. 2005;6:211. doi:10.1186/gb-2005-6-3-211.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci Transl Med. 2013;5:200ra116. doi:10.1126/scitranslmed.3006504.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. PNAS. 2002;99:12293–7. doi:10.1073/pnas.192461099.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol. 2005;17:133–44. doi:10.1093/intimm/dxh194.

    Article  CAS  PubMed  Google Scholar 

  53. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65:1089–96.

    CAS  PubMed  Google Scholar 

  54. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75. doi:10.1200/JCO.2009.26.7609.

    Article  CAS  PubMed  Google Scholar 

  55. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54. doi:10.1056/NEJMoa1200690.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30. doi:10.1200/JCO.2013.53.0105.

    Article  CAS  PubMed  Google Scholar 

  57. Nivolumab receives manufacturing and marketing approval in Japan for the treatment of unresectable melanoma|ESMO. http://www.esmo.org/Oncology-News/Nivolumab-Receives-Manufacturing-and-Marketing-Approval-in-Japan-for-the-Treatment-of-Unresectable-Melanoma. Accessed 15 Jan 2015.

  58. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2014. doi:10.1056/NEJMoa1412082.

  59. Weber JS, Minor D, D’Angelo SP, et al. A phase 3 randomized, open-label study of nivolumab (anti-PD-1; BMS-936558; ONO-4538) versus investigator’s choicechemotherapy (ICC) in patients with advanced melanoma with prior anti-CTLA-4 therapy. In: Presented at the European Society for Medical Oncology 2014 Congress, Madrid, September 26–30, 2014. abstract.

  60. Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44. doi:10.1056/NEJMoa1305133.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17. doi:10.1016/S0140-6736(14)60958-2.

    Article  CAS  PubMed  Google Scholar 

  62. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen Y-B, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31:4199–206. doi:10.1200/JCO.2012.48.3685.

    Article  CAS  PubMed  Google Scholar 

  63. Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15:69–77. doi:10.1016/S1470-2045(13)70551-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Atkins MB, Kudchadkar RR, Sznol M, McDermott DF, Lotem M, Schachter J, et al. Phase 2, multicenter, safety and efficacy study of pidilizumab in patients with metastatic melanoma. J Clin Oncol. 2014;32:5s.

    Article  Google Scholar 

  65. McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013;2:662–73. doi:10.1002/cam4.106.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65. doi:10.1056/NEJMoa1200694.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Herbst RS, Gordon MS, Fine GD, Sosman JA, Soria J-C, Hamid O, et al. A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. In: ASCO Meeting Abstracts. 2013. vol 31. p. 3000.

  68. Hamid O, Sosman JA, Lawrence DP, Sullivan RJ, Ibrahim N, Kluger HM, et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma (mM). J Clin Oncol. 2013;31. (suppl; abstr 9010).

  69. Lutzky J, Antonia SJ, Blake-Haskins A, Li X, Robbins PB, Shalabi AM, et al. A phase 1 study of MEDI4736, an anti–PD-L1 antibody, in patients with advanced solid tumors. J Clin Oncol. 2014;32:5s.

    Article  Google Scholar 

  70. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. PNAS. 2010;107:4275–80. doi:10.1073/pnas.0915174107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Tötterman TH. Enhanced Tumor Eradication by Combining CTLA-4 or PD-1 Blockade With CpG Therapy. J Immunother. 2010;33:225–35. doi:10.1097/CJI.0b013e3181c01fcb.

    Article  CAS  PubMed  Google Scholar 

  72. Selby M, Engelhardt J, Lu L-S, et al. Antitumor activity of concurrent blockade of immune checkpoint molecules CTLA-4 and PD-1 in preclinical models. J Clin Oncol. 2013;31:Suppl-Suppl.

  73. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33. doi:10.1056/NEJMoa1302369.

    Article  CAS  PubMed  Google Scholar 

  74. Sznol M, Kluger H, Callahan M, Postow M, Gordon R, Segal N, et al. Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma. J Clin Oncol. 2014;32(5 Suppl.):LBA9003.

    Google Scholar 

  75. Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. JCO. 2013;31:4311–8. doi:10.1200/JCO.2013.51.4802.

    Article  CAS  Google Scholar 

  76. Grosso J, Horak CE, Inzunza D, Cardona DM, Simon JS, Gupta AK, et al. Association of tumor PD-L1 expression and immune biomarkers with clinical activity in patients (pts) with advanced solid tumors treated with nivolumab (anti-PD-1; BMS-936558; ONO-4538). J Clin Oncol. 2013;31. (suppl; abstr 3016).

  77. Daud A, Hamid O, Ribas A, Hodi S, Hwu W, Kefford R, et al. Antitumor activity of the anti-PD-1 monoclonal antibody MK-3475 in melanoma(MEL): Correlation of tumor PD-L1 expression with outcome. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5–9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr CT104. doi:10.1158/1538-7445.AM2014-CT104.

  78. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64. doi:10.1038/nrc3239.

    Article  CAS  PubMed  Google Scholar 

  79. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37. doi:10.1126/scitranslmed.3003689.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74. doi:10.1158/1078-0432.CCR-13-3271.

    Article  CAS  PubMed  Google Scholar 

  81. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71. doi:10.1038/nature13954.

    Article  CAS  PubMed  Google Scholar 

  82. Ribas A, Tumeh PC. The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res. 2014;20:4982–4. doi:10.1158/1078-0432.CCR-14-0933.

    Article  CAS  PubMed  Google Scholar 

  83. Robins HS, Ericson NG, Guenthoer J, O’Briant KC, Tewari M, Drescher CW, et al. Digital genomic quantification of tumor-infiltrating lymphocytes. Sci Transl Med. 2013;5:214ra169. doi:10.1126/scitranslmed.3007247.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Gajewski TF, Louahed J, Brichard VG. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 2010;16:399–403. doi:10.1097/PPO.0b013e3181eacbd8.

    Article  CAS  PubMed  Google Scholar 

  85. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer. 2014;2:3. doi:10.1186/2051-1426-2-3.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Andtbacka RHI, Collichio FA, Amatruda T, Senzer NN, Chesney J, Delman KA, et al. OPTiM: a randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J Clin Oncol. 2013;31. (suppl; abstr LBA9008).

Download references

Acknowledgments

K.T. has no conflicts of interest to declare. A.D. is the recipient of grants from Bristol-Myers Squibb, Genentech, Merck, and Roche, as well as consulting fees/honoraria from Merck and Roche. No funding was used in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil I. Daud.

Additional information

This article is part of the topical collection on Immuno-Oncology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, K.K., Daud, A.I. The Role of Anti-PD-1/PD-L1 Agents in Melanoma: Progress to Date. Drugs 75, 563–575 (2015). https://doi.org/10.1007/s40265-015-0376-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-015-0376-z

Keywords

Navigation