Skip to main content
Log in

Osteoporosis and Multiple Sclerosis: Risk Factors, Pathophysiology, and Therapeutic Interventions

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic inflammatory-demyelinating disease of the nervous system. There has been mounting evidence showing that MS is associated with increased risk of osteoporosis and fractures. The development of osteoporosis in MS patients can be related to the cumulative effects of various factors. This review summarizes the common risk factors and physiologic pathways that play a role in development of osteoporosis in MS patients. Physical inactivity and reduced mechanical load on the bones (offsetting gravity) is likely the major contributing factor for osteoporosis in MS. Additional possible factors leading to reduced bone mass are low vitamin D levels, and use of medications such as glucocorticoids and anticonvulsants. The role of the inflammatory processes related to the underlying disease is considered in the context of the complex bone metabolism. The known effect of different MS disease-modifying therapies on bone health is limited. An algorithm for diagnosis and management of osteoporosis in MS is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–17.

    Article  CAS  PubMed  Google Scholar 

  2. Sa MJ. Physiopathology of symptoms and signs in multiple sclerosis. Arq Neuropsiquiatr. 2012;70(9):733–40.

    Article  PubMed  Google Scholar 

  3. Weinstock-Guttman B, et al. Risk of bone loss in men with multiple sclerosis. Mult Scler. 2004;10(2):170–5.

    Article  PubMed  Google Scholar 

  4. Hearn AP, Silber E. Osteoporosis in multiple sclerosis. Mult Scler. 2010;16(9):1031–43.

    Article  PubMed  Google Scholar 

  5. Zorzon M, et al. Long-term effects of intravenous high dose methylprednisolone pulses on bone mineral density in patients with multiple sclerosis. Eur J Neurol. 2005;12(7):550–6.

    Article  CAS  PubMed  Google Scholar 

  6. Marrie RA, et al. A cross-sectional study of bone health in multiple sclerosis. Neurology. 2009;73(17):1394–8.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sioka C, Kyritsis AP, Fotopoulos A. Multiple sclerosis, osteoporosis, and vitamin D. J Neurol Sci. 2009;287(1–2):1–6.

    Article  CAS  PubMed  Google Scholar 

  8. Gibson JC, Summers GD. Bone health in multiple sclerosis. Osteoporos Int. 2011;22(12):2935–49.

    Article  CAS  PubMed  Google Scholar 

  9. Josyula S, et al. The nervous system’s potential role in multiple sclerosis associated bone loss. J Neurol Sci. 2012;319(1–2):8–14.

    Article  PubMed  Google Scholar 

  10. Ye S, Wu R, Wu J. Multiple sclerosis and fracture. Int J Neurosci. 2013;123(9):609–16.

    Article  PubMed  Google Scholar 

  11. Levis S, Theodore G. Summary of AHRQ’s comparative effectiveness review of treatment to prevent fractures in men and women with low bone density or osteoporosis: update of the 2007 report. J Manag Care Pharm. 2012;18(4 Suppl B):S1–15 (discussion S13).

    PubMed  Google Scholar 

  12. Cosman F, et al. Fracture history and bone loss in patients with MS. Neurology. 1998;51(4):1161–5.

    Article  CAS  PubMed  Google Scholar 

  13. Nieves J, et al. High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology. 1994;44(9):1687–92.

    Article  CAS  PubMed  Google Scholar 

  14. Ozgocmen S, et al. Vitamin D deficiency and reduced bone mineral density in multiple sclerosis: effect of ambulatory status and functional capacity. J Bone Miner Metab. 2005;23(4):309–13.

    Article  PubMed  Google Scholar 

  15. Achiron A, et al. Bone strength in multiple sclerosis: cortical midtibial speed-of-sound assessment. Mult Scler. 2004;10(5):488–93.

    Article  PubMed  Google Scholar 

  16. Moen SM, et al. Low bone mass in newly diagnosed multiple sclerosis and clinically isolated syndrome. Neurology. 2011;77(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  17. Heaney RP. Pathophysiology of osteoporosis. Endocrinol Metab Clin North Am. 1998;27(2):255–65.

    Article  CAS  PubMed  Google Scholar 

  18. Sipos W, et al. Pathophysiology of osteoporosis. Wien Med Wochenschr. 2009;159(9–10):230–4.

    Article  PubMed  Google Scholar 

  19. Luis Neyro J, Jesus Cancelo M, Palacios S. Inhibition of RANK-L in the pathophysiology of osteoporosis. Clinical evidences of its use. Ginecol Obstet Mex. 2013;81(3):146–57.

    PubMed  Google Scholar 

  20. Negishi-Koga T, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17(11):1473–80.

    Article  CAS  PubMed  Google Scholar 

  21. Korn T. Pathophysiology of multiple sclerosis. J Neurol. 2008;255(Suppl 6):2–6.

    Article  CAS  PubMed  Google Scholar 

  22. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332(5):305–11.

    Article  CAS  PubMed  Google Scholar 

  23. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7(4):134–9.

    Article  PubMed  Google Scholar 

  24. Altintas A, et al. The role of osteopontin: a shared pathway in the pathogenesis of multiple sclerosis and osteoporosis? J Neurol Sci. 2009;276(1–2):41–4.

    Article  CAS  PubMed  Google Scholar 

  25. Vogt MH, et al. Increased osteopontin plasma levels in multiple sclerosis patients correlate with bone-specific markers. Mult Scler. 2010;16(4):443–9.

    Article  CAS  PubMed  Google Scholar 

  26. Slavov GS, et al. Vitamin D immunomodulatory potential in multiple sclerosis. Folia Med (Plovdiv). 2013;55(2):5–9.

    CAS  Google Scholar 

  27. Munger KL, et al. Vitamin D intake and incidence of multiple sclerosis. Neurology. 2004;62(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  28. George PM, et al. Pharmacology and therapeutic potential of interferons. Pharmacol Ther. 2012;135(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  29. Abraham AK, et al. Mechanisms of interferon-beta effects on bone homeostasis. Biochem Pharmacol. 2009;77(12):1757–62.

    Article  CAS  PubMed  Google Scholar 

  30. Moen SM, et al. Bone turnover and metabolism in patients with early multiple sclerosis and prevalent bone mass deficit: a population-based case-control study. PLoS One. 2012;7(9):e45703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Thomas T, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology. 1999;140(4):1630–8.

    CAS  PubMed  Google Scholar 

  32. Gordeladze JO, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem. 2002;85(4):825–36.

    Article  CAS  PubMed  Google Scholar 

  33. Ducy P, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  34. Elefteriou F, et al. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci USA. 2004;101(9):3258–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ruhl CE, et al. Body mass index and serum leptin concentration independently estimate percentage body fat in older adults. Am J Clin Nutr. 2007;85(4):1121–6.

    CAS  PubMed  Google Scholar 

  36. Friedman JM. The function of leptin in nutrition, weight, and physiology. Nutr Rev. 2002;60(10 Pt 2):S1–14 (discussion S68–84, 85–7).

    Article  PubMed  Google Scholar 

  37. Glauber HS, et al. Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab. 1995;80(4):1118–23.

    CAS  PubMed  Google Scholar 

  38. Wardlaw GM. Putting body weight and osteoporosis into perspective. Am J Clin Nutr. 1996;63(3 Suppl):433S–6S.

    CAS  PubMed  Google Scholar 

  39. Carlton ED, Demas GE, French SS. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm Behav. 2012;62(3):272–9.

    Article  CAS  PubMed  Google Scholar 

  40. Yadav VK, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Veniant MM, LeBel CP. Leptin: from animals to humans. Curr Pharm Des. 2003;9(10):811–8.

    Article  CAS  PubMed  Google Scholar 

  42. De Rosa V, et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest. 2006;116(2):447–55.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Matarese G, et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol. 2001;166(10):5909–16.

    Article  CAS  PubMed  Google Scholar 

  44. Budhiraja S, Chugh A. Neuromedin U: physiology, pharmacology and therapeutic potential. Fund Clin Pharmacol. 2009;23(2):149–57.

    Article  CAS  Google Scholar 

  45. Sato S, et al. Central control of bone remodeling by neuromedin U. Nat Med. 2007;13(10):1234–40.

    Article  CAS  PubMed  Google Scholar 

  46. Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone. 2012;50(2):430–6.

    Article  CAS  PubMed  Google Scholar 

  47. Khor EC, Baldock P. The NPY system and its neural and neuroendocrine regulation of bone. Curr Osteoporos Rep. 2012;10(2):160–8.

    Article  PubMed  Google Scholar 

  48. Inose H, et al. Efficacy of serotonin inhibition in mouse models of bone loss. J Bone Miner Res. 2011;26(9):2002–11.

    Article  CAS  PubMed  Google Scholar 

  49. Karsenty G, Yadav VK. Regulation of bone mass by serotonin: molecular biology and therapeutic implications. Annu Rev Med. 2011;62:323–31.

    Article  CAS  PubMed  Google Scholar 

  50. Yuan XQ, et al. Fluoxetine promotes remission in acute experimental autoimmune encephalomyelitis in rats. Neuroimmunomodulation. 2012;19(4):201–8.

    Article  CAS  PubMed  Google Scholar 

  51. Elefteriou F, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–20.

    Article  CAS  PubMed  Google Scholar 

  52. Shi Y, et al. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab. 2010;11(3):231–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Smith CJ, Fischer TH. Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction. Atherosclerosis. 2001;158(2):257–67.

    Article  CAS  PubMed  Google Scholar 

  54. Didilescu AC, et al. The role of smoking in changing essential parameters in body homeostasis. Pneumologia. 2009;58(2):89–94.

    PubMed  Google Scholar 

  55. Emre M, de Decker C. Effects of cigarette smoking on motor functions in patients with multiple sclerosis. Arch Neurol. 1992;49(12):1243–7.

    Article  CAS  PubMed  Google Scholar 

  56. Zivadinov R, et al. Smoking is associated with increased lesion volumes and brain atrophy in multiple sclerosis. Neurology. 2009;73(7):504–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Manouchehrinia A, et al. Tobacco smoking and disability progression in multiple sclerosis: United Kingdom cohort study. Brain. 2013;136(Pt 7):2298–304.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Hernan MA, Olek MJ, Ascherio A. Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol. 2001;154(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  59. Brot C, Jorgensen NR, Sorensen OH. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr. 1999;53(12):920–6.

    Article  CAS  PubMed  Google Scholar 

  60. Fini M, et al. Role of obesity, alcohol and smoking on bone health. Front Biosci (Elite Ed). 2012;4:2686–706.

    Article  Google Scholar 

  61. Borer KT. Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med. 2005;35(9):779–830.

    Article  PubMed  Google Scholar 

  62. Mojtahedi MC, et al. Bone health in ambulatory individuals with multiple sclerosis: impact of physical activity, glucocorticoid use, and body composition. J Rehabil Res Dev. 2008;45(6):851–61.

    Article  PubMed  Google Scholar 

  63. Steffensen LH, Mellgren SI, Kampman MT. Predictors and prevalence of low bone mineral density in fully ambulatory persons with multiple sclerosis. J Neurol. 2010;257(3):410–8.

    Article  PubMed  Google Scholar 

  64. De Nijs RN. Glucocorticoid-induced osteoporosis: a review on pathophysiology and treatment options. Minerva Med. 2008;99(1):23–43.

    PubMed  Google Scholar 

  65. Dovio A, et al. Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J Clin Endocrinol Metab. 2004;89(10):4923–8.

    Article  CAS  PubMed  Google Scholar 

  66. Tuzun S, et al. Bone status in multiple sclerosis: beyond corticosteroids. Mult Scler. 2003;9(6):600–4.

    Article  PubMed  Google Scholar 

  67. Schwid SR, et al. Sporadic corticosteroid pulses and osteoporosis in multiple sclerosis. Arch Neurol. 1996;53(8):753–7.

    Article  CAS  PubMed  Google Scholar 

  68. Olafsson E, Benedikz J, Hauser WA. Risk of epilepsy in patients with multiple sclerosis: a population-based study in Iceland. Epilepsia. 1999;40(6):745–7.

    Article  CAS  PubMed  Google Scholar 

  69. Ghezzi A, et al. Epilepsy in multiple sclerosis. Eur Neurol. 1990;30(4):218–23.

    Article  CAS  PubMed  Google Scholar 

  70. Petty SJ, et al. Effect of antiepileptic medication on bone mineral measures. Neurology. 2005;65(9):1358–65.

    Article  CAS  PubMed  Google Scholar 

  71. Lee RH, Lyles KW, Colon-Emeric C. A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother. 2010;8(1):34–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Truini A, et al. A mechanism-based classification of pain in multiple sclerosis. J Neurol. 2013;260(2):351–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Solaro C, Trabucco E, Messmer Uccelli M. Pain and multiple sclerosis: pathophysiology and treatment. Curr Neurol Neurosci Rep. 2013;13(1):320.

    Article  PubMed  Google Scholar 

  74. Daniell HW. OPioid osteoporosis. Arch Internal Med. 2004;164(3):338.

    Article  Google Scholar 

  75. Elhassan AM, et al. Methionine-enkephalin in bone and joint tissues. J Bone Miner Res. 1998;13(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  76. Loskutova N, et al. Bone density and brain atrophy in early Alzheimer’s disease. J Alzheimers Dis. 2009;18(4):777–85.

    PubMed Central  PubMed  Google Scholar 

  77. Batista S, et al. Cognitive impairment is associated with reduced bone mass in multiple sclerosis. Mult Scler. 2012;18(10):1459–65.

    Article  PubMed  Google Scholar 

  78. Shuhaibar M, et al. Favorable effect of immunomodulator therapy on bone mineral density in multiple sclerosis. Ir J Med Sci. 2009;178(1):43–5.

    Article  CAS  PubMed  Google Scholar 

  79. Weinstock-Guttman B, et al. Interferon-beta modulates bone-associated cytokines and osteoclast precursor activity in multiple sclerosis patients. Mult Scler. 2006;12(5):541–50.

    Article  CAS  PubMed  Google Scholar 

  80. National Osteoporosis Foundation. NOF’s clinicians’ guide to the prevention and treatment of osteoporosis (http://nof.org/hcp/resources/913.

  81. Ishii M, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature. 2009;458(7237):524–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Sato C, et al. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation. Biochem Biophys Res Commun. 2012;423(1):200–5.

    Article  CAS  PubMed  Google Scholar 

  83. Huang C, et al. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation. Cell Tissue Res. 2012;347(3):553–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Kanis JA, et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Melton LJ 3rd, et al. Potential extensions of the US FRAX algorithm. J Osteoporos. 2012;2012:528790.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Dennison EM, et al. Effect of co-morbidities on fracture risk: findings from the global longitudinal study of osteoporosis in women (GLOW). Bone. 2012;50(6):1288–93.

    Article  PubMed  Google Scholar 

  87. Bazelier MT, et al. A simple score for estimating the long-term risk of fracture in patients with multiple sclerosis. Neurology. 2012;79(9):922–8.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Sundstrom P, Salzer J. Vitamin D and multiple sclerosis: timing of sampling, treatment and prevention. Biomark Med. 2013;7(2):193–5.

    Article  PubMed  Google Scholar 

  89. Myhr KM. Vitamin D treatment in multiple sclerosis. J Neurol Sci. 2009;286(1–2):104–8.

    Article  CAS  PubMed  Google Scholar 

  90. Weinstock-Guttman B, et al. Vitamin D and multiple sclerosis. Neurologist. 2012;18(4):179–83.

    Article  PubMed  Google Scholar 

  91. Ascherio A, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014;71(3):306–14.

    Article  PubMed  Google Scholar 

  92. Kmietowicz Z. NICE publishes osteoporosis guidance after more than six years of consultation. BMJ. 2008;337:a2397.

    Article  PubMed  Google Scholar 

  93. Compston J. NICE: its influence in treating osteoporosis in the UK and beyond. Ther Adv Musculoskelet Dis. 2009;1(2):63–6.

    Article  PubMed Central  PubMed  Google Scholar 

  94. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014; 370(5):412-20

  95. Cummings SR, et al. Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med. 2010;362(8):686–96.

    Article  CAS  PubMed  Google Scholar 

  96. Trojano M, et al. The transition from relapsing-remitting MS to irreversible disability: clinical evaluation. Neurol Sci. 2003;24(Suppl 5):S268–70.

    Article  PubMed  Google Scholar 

  97. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med. 2008;358(12):1304–6.

    Article  CAS  PubMed  Google Scholar 

  98. Black DM, et al. Bisphosphonates and fractures of the subtrochanteric or diaphyseal femur. N Engl J Med. 2010;362(19):1761–71.

    Article  CAS  PubMed  Google Scholar 

  99. Odvina CV, et al. Unusual mid-shaft fractures during long-term bisphosphonate therapy. Clin Endocrinol. 2010;72(2):161–8.

    Article  CAS  Google Scholar 

  100. Shane E, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 2014;29(1):1–23.

    Article  PubMed  Google Scholar 

  101. Formica CA, et al. Reduced bone mass and fat-free mass in women with multiple sclerosis: effects of ambulatory status and glucocorticoid use. Calcif Tissue Int. 1997;61(2):129–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

B Weinstock-Guttman has participated in speaker’s bureaus and served as a consultant for Biogen Idec, Teva Neurosciences, EMD Serono, Pfizer, Novartis, Genzyme, Sanofi, Mylan, and Acorda. She has also received grant/research support from the agencies listed above as well as ITN, Questcor, and Shire. No other industry financial relationships exist.

Dr. Murali Ramanathan received research funding or consulting fees from EMD Serono, Biogen Idec, Pfizer, Novartis, Monsanto, the National Multiple Sclerosis Society, the Department of Defense, Jog for the Jake Foundation, and the National Institutes of Health and National Science Foundation. He received compensation for serving as an editor from the American Association of Pharmaceutical Scientists. These are unrelated to the research presented in this report.

Sahil Gupta has no disclosures.

Irfan Ahsan has no disclosures.

Naeem Mahfooz has no disclosures.

Noureldin Abdelhamid has no disclosures.

No funding was provided for preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Weinstock-Guttman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Ahsan, I., Mahfooz, N. et al. Osteoporosis and Multiple Sclerosis: Risk Factors, Pathophysiology, and Therapeutic Interventions. CNS Drugs 28, 731–742 (2014). https://doi.org/10.1007/s40263-014-0173-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-014-0173-3

Keywords

Navigation