Skip to main content
Log in

A Qualitative Review on the Pharmacokinetics of Antibiotics in Saliva: Implications on Clinical Pharmacokinetic Monitoring in Humans

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

We conducted a systematic search to describe the current state of knowledge regarding the utility of saliva for clinical pharmacokinetic monitoring (CPM) of antibiotics. Although the majority of identified studies lacked sufficient pharmacokinetic data needed to assign an appropriate suitability classification, most aminoglycosides, fluoroquinolones, macrolides, penicillins/cephalosporins, and tetracyclines are likely not suitable for CPM in saliva. No clear pattern of correlation was observed between physiochemical properties that favor drug distribution into saliva and the likelihood of the antibiotic being classified as suitable for CPM in saliva (and vice versa). Insufficient data were available to determine if pathophysiological conditions affected salivary distribution of antibiotics. Additional confirmatory data are required for drugs (especially in patients) that are deemed likely suitable for CPM in saliva because only a few studies were available and many focused only on healthy subjects. All studies identified had relatively small sample sizes and exhibited large variability. Very few studies reported salivary collection parameters (e.g., salivary flow, pH) that could potentially have some impact on drug distribution into saliva. The available data are heavily weighted on healthy subjects, and insufficient data were available to determine if pathophysiology had effects on saliva drug distribution. Some studies also lacked assay sensitivity for detecting antibiotics in saliva. Overall, this review can be useful to clinicians who desire an overview on the suitability of saliva for conducting CPM of specific antibiotics, or for researchers who wish to fill the identified knowledge gaps to move the science of salivary CPM further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koka S, Beebe TJ, Merry SP, et al. The preferences of adult outpatients in medical or dental care settings for giving saliva, urine or blood for clinical testing. J Am Dent Assoc. 2008;139:735–40.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Raju KS, Taneja I, Singh SP, et al. Utility of noninvasive biomatrices in pharmacokinetic studies. Biomed Chromatogr. 2013;27:1354–66.

    Article  CAS  PubMed  Google Scholar 

  3. Mullangi R, Agrawal S, Srinivas NR. Measurement of xenobiotics in saliva: is saliva an attractive alternative matrix? Case studies and analytical perspectives. Biomed Chromatogr. 2009;23:3–25.

    Article  CAS  PubMed  Google Scholar 

  4. Drobitch RK, Svensson CK. Therapeutic drug monitoring in saliva: an update. Clin Pharmacokinet. 1992;23:365–79.

    Article  CAS  PubMed  Google Scholar 

  5. Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150:119–31.

    Article  CAS  PubMed  Google Scholar 

  6. Najjar TA, Alkharfy KM, Saad SY. Mechanism and implication of cephalosporin penetration into oropharyngeal mucosa. J Infect Chemother. 2009;15:70–4.

    Article  CAS  PubMed  Google Scholar 

  7. Patsalos PN, Berry DJ. Therapeutic drug monitoring of antiepileptic drugs by use of saliva. Ther Drug Monit. 2013;35:4–29.

    Article  CAS  PubMed  Google Scholar 

  8. Bosker WM, Huestis MA. Oral fluid testing for drugs of abuse. Clin Chem. 2009;55:1910–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. ter Heine R, Bejinen JH, Huitema AD. Bioanalytical issues in patient-friendly sampling methods for therapeutic drug monitoring: focus on antiretroviral drugs. Bioanalysis. 2009;1:1329–38.

    Article  PubMed  Google Scholar 

  10. Kiang TK, Hafeli UO, Ensom MH. A comprehensive review on the pharmacokinetics of antibiotics in interstitial fluid spaces in humans: implications on dosing and clinical pharmacokinetic monitoring. Clin Pharmacokinet. 2014;53:695–730.

    Article  CAS  PubMed  Google Scholar 

  11. Kiang TK, Schmitt V, Ensom MH, et al. Therapeutic drug monitoring in interstitial fluid: a feasibility study using a comprehensive panel of drugs. J Pharm Sci. 2012;101:4642–52.

    Article  CAS  PubMed  Google Scholar 

  12. Berkovitch M, Bistritzer T, Aladjem M, et al. Clinical relevance of therapeutic drug monitoring of digoxin and gentamicin in the saliva of children. Ther Drug Monit. 1998;20:253–6.

    Article  CAS  PubMed  Google Scholar 

  13. Berkovitch M, Goldman M, Siliverman R, et al. Therapeutic drug monitoring of once daily gentamicin in serum and saliva of children. Eur J Pediatr. 2000;159:697–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hendeles L, Hill M, Lafrate RP. Measurement of tobramycin concentrations in saliva. Drug Intell Clin Pharm. 1985;19:378–80.

    CAS  PubMed  Google Scholar 

  15. Madsen V, Lind A, Rasmussen M, et al. Determination of tobramycin in saliva is not suitable for therapeutic drug monitoring of patients with cystic fibrosis. J Cyst Fibros. 2004;3:249–51.

    Article  CAS  PubMed  Google Scholar 

  16. Bender IB, Pressman RS, Tashman SG. Studies on excretion of antibiotics in human saliva. I. Penicillin and streptomycin. J Am Dent Assoc. 1953;46:164–70.

    Article  CAS  PubMed  Google Scholar 

  17. Spencer H, Kozlowska W, Davies JC, et al. Measurement of tobramycin and gentamicin in saliva is not suitable for therapeutic drug monitoring of patients with cystic fibrosis. J Cyst Fibros. 2005;4:209.

    Article  PubMed  Google Scholar 

  18. LeBel M, Vallee F, Bergeron MG. Tissue penetration of ciprofloxacin after single and multiple doses. Antimicrob Agents Chemother. 1986;29:501–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. LeBel M, Barbeau G, Bergeron MG, et al. Pharmacokinetics of ciprofloxacin in elderly subjects. Pharmacotherapy. 1986;6:87–91.

    Article  CAS  PubMed  Google Scholar 

  20. Darouiche R, Perkins B, Musher D, et al. Levels of rifampin and ciprofloxacin in nasal secretions: correlation with MIC90 and eradication of nasopharyngeal carriage of bacteria. J Infect Dis. 1990;162:1124–7.

    Article  CAS  PubMed  Google Scholar 

  21. Zhai S, Wei X, Parker BM, et al. Relation between plasma and saliva concentrations of enoxacin, ciprofloxacin, and theophylline. Ther Drug Monit. 1996;18:666–71.

    Article  CAS  PubMed  Google Scholar 

  22. Kozjek F, Suturkova LJ, Antolic G, et al. Kinetics of 4-fluoroquinolones permeation into saliva. Biopharm Drug Dispos. 1999;20:183–91.

    Article  CAS  PubMed  Google Scholar 

  23. Brunner M, Stabeta H, Moller JG, et al. Target site concentrations of ciprofloxacin after single intravenous and oral doses. Antimicrob Agents Chemother. 2002;46:3724–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jaehde U, Sorgel F, Reiter A, et al. Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther. 1995;58:532–41.

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez MA, Uribe F, Moisen SD, et al. Multiple-dose pharmacokinetics and safety of ciprofloxacin in normal volunteers. Antimicrob Agents Chemother. 1984;26:741–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Smith A, Weber A, Pandher R, et al. Utilization of salivary concentrations of ciprofloxacin in subjects with cystic fibrosis. Infection. 1997;25:106–8.

    Article  CAS  PubMed  Google Scholar 

  27. Stass H, Dalhoff A, Kubitza D, et al. Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects. Antimicrob Agents Chemother. 1998;42:2060–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Muller M, Stass H, Brunner M, et al. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agents Chemother. 1999;43:2345–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Burkhardt O, Borner K, Stass H, et al. Single- and multiple-dose pharmacokinetics of oral moxifloxacin and clarithromycin, and concentrations in serum, saliva and faeces. Scand J Respir Dis. 2002;34:898–903.

    Article  CAS  Google Scholar 

  30. Beyer G, Hiemer-Bau M, Ziege S, et al. Impact of moxifloxacin versus clarithromycin on normal oropharyngeal microflora. Eur J Clin Microbiol Infec Dis. 2000;19:548–50.

    Article  CAS  Google Scholar 

  31. Burkhardt O, Derendorf H, Jager D, et al. Moxifloxacin distribution in the interstitial space of infected decubitus ulcer tissue of patients with spinal cord injury measured by in vivo microdialysis. Scand J Infect Dis. 2006;38:904–8.

    Article  CAS  PubMed  Google Scholar 

  32. Muller M, Stass H, Brunner M, et al. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agnets Chemother. 1999;43:2345–9.

    CAS  Google Scholar 

  33. Ohkubo T, Suno M, Kudo M, et al. Column-switching high-performance liquid chromatography of ofloxacin in human saliva and correlation of ofloxacin level in saliva and serum. Ther Drug Monit. 1996;18:598–603.

    Article  CAS  PubMed  Google Scholar 

  34. Immanuel C, Hemanthkumar AK, Gurumurthy P, et al. Dose related pharmacokinetics of ofloxacin in healthy volunteers. Int J Tuberc Lung Dis. 2002;6:1017–22.

    CAS  PubMed  Google Scholar 

  35. Warlich R, Korting HC, Schafer-Korting M, et al. Multiple-dose pharmacokinetics of ofloxacin in serum, saliva, and skin blister fluid of healthy volunteers. Antimicrob Agents Chemother. 1990;34:78–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kern W, Kurrle E, Vanek E. Ofloxacin for prevention of bacterial infections in granulocytopenic patients. Infection. 1987;15:427–33.

    Article  CAS  PubMed  Google Scholar 

  37. Takagi K, Hasegawa T, Yamaki K, et al. Secretion of ofloxacin into saliva in patients with respiratory tract infection. Int J Clin Pharmacol Ther Toxicol. 1992;30:46–50.

    CAS  PubMed  Google Scholar 

  38. Koizumi F, Ohnishi A, Takemura H, et al. Effective monitoring of concentrations of ofloxacin in saliva of patients with chronic respiratory tract infections. Antimicrob Agents Chemother. 1994;38:1140–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Fujita K, Matsuoka N, Takenaka I, et al. Pharmacokinetics of ofloxacin: measurement of drug concentration in saliva of patients with impaired renal function. Drugs. 1995;49:312–3.

    Article  CAS  PubMed  Google Scholar 

  40. Miya T, Hamakubo S, Goya T, et al. Ofloxacin concentrations in serum, saliva and pleural effusion of patients with pulmonary tuberculosis and lung cancer. Jpn J Antibiot. 1995;48:960–4.

    CAS  PubMed  Google Scholar 

  41. Fujita I, Sindhu RK, Kikkawa Y. Hepatic cytochrome P450 enzyme imprinting in adult rat by neonatal benzo[a]pyrene administration. Pediatr Res. 1995;37:646–51.

    Article  CAS  PubMed  Google Scholar 

  42. Mignot A, Guillaume M, Brault M, et al. Multiple-dose pharmacokinetics and excretion balance of gatifloxacin, a new fluoroquinolone antibiotic, following oral administration to healthy Caucasian volunteers. Chemotherapy. 2002;48:116–21.

    Article  CAS  PubMed  Google Scholar 

  43. Edlund C, Bergan T, Josefsson K, et al. Effect of norfloxacin on human oropharyngeal and colonic microflora and multiple-dose pharmacokinetics. Scand J Infec Dis. 1987;19:113–21.

    Article  CAS  Google Scholar 

  44. Janin N, Meugnier H, Desnottes JF, et al. Recovery of pefloxacin in saliva and feces and its action on oral and fecal floras of healthy volunteers. Antimicrob Agents Chemother. 1987;31:1665–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Malizia T, Tejada MR, Ghelardi E, et al. Periodontal tissue disposition of azithromycin. J Periodontol. 1997;68:1206–9.

    Article  CAS  PubMed  Google Scholar 

  46. Blandizzi C, Malizia T, Lupetti A, et al. Periodontal tissue disposition of azithromycin in patients affected by chronic inflammatory periodontal diseases. J Periodontol. 1999;70:960–6.

    Article  CAS  PubMed  Google Scholar 

  47. Malizia T, Batoni G, Ghelardi E, et al. Interaction between piroxicam and azithromycin during distribution to human periodontal tissues. J Periodontol. 2001;72:1151–6.

    Article  CAS  PubMed  Google Scholar 

  48. Idkaidek N, Arafat T. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol Pharm. 2012;9:2358–63.

    Article  CAS  PubMed  Google Scholar 

  49. Wust J, Hardegger U. Penetration of clarithromycin into human saliva. Chemotherapy. 1993;39:293–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kees F, Wellenhofer M, Grobecker H. Serum and cellular pharmacokinetics of clarithromycin 500 mg q.d. and 250 mg b.i.d. in volunteers. Infection. 1995;23:168–72.

    Article  CAS  PubMed  Google Scholar 

  51. Goddard AF, Jessa MJ, Barrett DA, et al. Effect of omeprazole on the distribution of metronidazole, amoxicillin, and clarithromycin in human gastric juice. Gastroenterology. 1996;111:358–67.

    Article  CAS  PubMed  Google Scholar 

  52. Bolhuis MS, van Altena R, van Hateren K, et al. Clinical validation of the analysis of linezolid and clarithromycin in oral fluid of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57:3676–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Berend N, Rutland J, Marlin GE. Plasma and saliva concentrations for a new formulation of erythromycin stearate. Curr Med Res Opin. 1979;6:118–23.

    Article  CAS  PubMed  Google Scholar 

  54. Henry J, Turner P, Garland M, et al. Plasma and salivary concentrations of erythromycin after administration of three different formulations. Postgrad Med J. 1980;56:707–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ducci M, Scalori V, Del Tacca M, et al. The pharmacokinetics of two erythromycin esters in plasma and in saliva following oral administration in humans. Int J Clin Pharmacol Ther Toxicol. 1981;19:494–7.

    CAS  PubMed  Google Scholar 

  56. Stephen KW, McCrossan J, Mackenzie D, et al. Factors determining the passage of drugs from blood into saliva. Br J Clin Pharmacol. 1980;9:51–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Geerdes-Fenge HF, Goetschi B, Rau M, et al. Comparative pharmacokinetics of dirithromycin and erythromycin in normal volunteers with special regard to accumulation in polymorphonuclear leukocytes and in saliva. Eur J Clin Pharmacol. 1997;53:127–33.

    Article  CAS  PubMed  Google Scholar 

  58. Stjernquist-Desatnik A, Samuelsson P, Walder M. Penetration of penicillin V to tonsillar surface fluid in healthy individuals and in patients with acute tonsillitis. J Laryngol Otol. 1993;107:309–12.

    Article  CAS  PubMed  Google Scholar 

  59. Del Tacca M, Danesi R, Bernardini N, et al. Roxithromycin penetration into gingiva and alveolar bone of odontoiatric patients. Chemotherapy. 1990;36:332–6.

    Article  PubMed  Google Scholar 

  60. Baglie S, Del Ruenis AP, Motta RH, et al. Plasma and salivary amoxicillin concentrations and effect against oral microorganisms. Int J Clin Pharmacol Ther. 2007;45:556–62.

    Article  CAS  PubMed  Google Scholar 

  61. Ortiz RA, Calafatti SA, Corazzi A, et al. Amoxicillin and ampicillin are not transferred to gastric juice irrespective of Helicobacter pylori status or acid blockade by omeprazole. Ailment Pharmacol Ther. 2002;16:1163–70.

    Article  CAS  Google Scholar 

  62. Akimoto Y, Mochizuki Y, Uda A, et al. Concentrations of ampicillin in human serum and mixed saliva following a single oral administration of lenampicillin, and relationship between serum and mixed saliva concentrations. J Nihon Univ Sch Dent. 1990;32:14–8.

    Article  CAS  PubMed  Google Scholar 

  63. Speirs CF, Stenhouse D, Stephen KW, et al. Comparison of human serum, parotid and mixed saliva levels of phenoxymethylpenicillin, ampicillin, cloxacillin and cephalexin. Br J Clin Pharmacol. 1971;43:242–7.

    Article  CAS  Google Scholar 

  64. May JR, Delves DM. Treatment of chronic bronchitis with ampicillin: some pharmacological observation. Lancet. 1965;1:233.

    Google Scholar 

  65. Stewart SM, Fisher M, Young JE, et al. Ampicillin levels in sputum, serum, and saliva. Thorax. 1970;25:304–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Stromberg A, Friberg U, Cars O. Concentrations of phenoxymethylpenicillin and cefadroxil in tonsillar tissue and tonsillar surface fluid. Eur J Clin Microbiol. 1987;6:525–9.

    Article  CAS  PubMed  Google Scholar 

  67. Grahn E, Holm SE. Penicillin concentration in saliva and its influence on bacterial interference. Scand J Infect Dis. 1987;19:235–41.

    Article  CAS  PubMed  Google Scholar 

  68. Quiding H, Arwidsson HG, Grahn E, et al. Saliva-resistant coating of tablets prevents oral release of penicillin: plasma but not saliva equivalence. Eur J Clin Pharmacol. 1998;54:749–52.

    Article  CAS  PubMed  Google Scholar 

  69. Zerfowski M, Schlegel P, Maier H. Pharmacokinetics of cefotiam in plasma, parotid saliva and mixed saliva in healthy adults. Arzneimittelforschung. 1991;41:257–9.

    CAS  PubMed  Google Scholar 

  70. Venetis G, Chatzika K, Pitsiou G, et al. Saliva and blood concentration of cefuroxime in patients undergoing maxillofacial surgery. J Oral Maxillofac Surg. 2012;70:1398–403.

    Article  PubMed  Google Scholar 

  71. Havard CW, Bax RP, Samanta TC, et al. Sputum and blood concentrations of cefuroxime in lower respiratory tract infection. Thorax. 1980;35:379–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Hoeprich PD, Warshauer DM. Entry of four tetracyclines into saliva and tears. Antimicrob Agents Chemother. 1974;5:330–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Stoller NH, Johnson LR, Trapnell S, et al. The pharmacokinetic profile of a biodegradable controlled-release delivery system containing doxycycline compared to systemically delivered doxycycline in gingival crevicular fluid, saliva, and serum. J Periodontol. 1998;69:1085–91.

    Article  CAS  PubMed  Google Scholar 

  74. Sakellari D, Goodson JM, Kolokotronis A, et al. Concentration of 3 tetracyclines in plasma, gingival crevice fluid and saliva. J Clin Periodontol. 2000;27:53–60.

    Article  CAS  PubMed  Google Scholar 

  75. Burian B, Zeitlinger M, Donath O, et al. Penetration of doripenem into skeletal muscle and subcutaneous adipose tissue in healthy volunteers. Antimicrob Agnets Chemother. 2012;56:532–5.

    Article  CAS  Google Scholar 

  76. Hara S, Uchiyama M, Toshinari M, et al. A simple high-performance liquid chromatography for the determination of linezolid in human plasma and saliva. Biomed Chromatogr. 2015:3441–2 (Epub ahead of print).

  77. Van Oosten MA, Notten FJ, Mikx FH. Metronidazole concentrations in human plasma, saliva, and gingival crevice fluid after a single dose. J Dent Res. 1986;65:1420–3.

    Article  PubMed  Google Scholar 

  78. Rotzetter PA, Le Liboux A, Pichard E, et al. Kinetics of spiramycin/metronidazole (Rodogyl) in human gingival crevicular fluid, saliva and blood. J Clin Periodontol. 1994;21:595–600.

    Article  CAS  PubMed  Google Scholar 

  79. Pahkla ER, Koppel T, Saaq M, et al. Metronidazole concentrations in plasma, saliva and periodontal pockets in patients with periodontitis. J Clin Periodontol. 2005;32:163–6.

    Article  PubMed  Google Scholar 

  80. Devine LF, Johnson DP, Hagerman CR, et al. Rifampin. Levels in serum and saliva and effect on the meningococcal carrier state. JAMA. 1970;214:1055–9.

    Article  CAS  PubMed  Google Scholar 

  81. Devine LF, Johnson DP, Rhode SL, et al. Rifampin: effect of two-day treatment on the meningococcal carrier state and the relationship to the levels of drug in sera and saliva. Am J Med Sci. 1971;261:79–83.

    Article  CAS  PubMed  Google Scholar 

  82. McCracken GH, Ginsburg CM, Zweighaft RC, et al. Pharmacokinetics of rifampin in infants and children: relevance to prophylaxis against Haemophilus influenzae type b disease. Pediatrics. 1980;66:17–21.

    PubMed  Google Scholar 

  83. Orisakwe OE, Akunyili DN, Agbasi PU, et al. Some plasma and saliva pharmacokinetics parameters of rifampicin in the presence of pefloxacin. Am J Ther. 2004;11:283–7.

    Article  PubMed  Google Scholar 

  84. Ezejiofor NA, Brown S, Barikpoar E, et al. Effect of ofloxacin and norfloxacin on rifampicin pharmacokinetics in man. Am J Ther. 2015;22:29–36.

    Article  PubMed  Google Scholar 

  85. Catena E, Perez G, Sadaba B, et al. A fast reverse-phase high performance liquid chromatographic tandem mass spectrometry assay for the quantification of clindamycin in plasma and saliva using a rapid resolution package. J Pharm Biomed Anal. 2009;50:649–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary H. H. Ensom.

Ethics declarations

Neither authors (Tony K.L. Kiang and Mary H.H. Ensom) received any funding for the preparation of this manuscript. Tony K.L. Kiang and Mary H.H. Ensom have no real or perceived conflicts of interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiang, T.K.L., Ensom, M.H.H. A Qualitative Review on the Pharmacokinetics of Antibiotics in Saliva: Implications on Clinical Pharmacokinetic Monitoring in Humans. Clin Pharmacokinet 55, 313–358 (2016). https://doi.org/10.1007/s40262-015-0321-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0321-z

Keywords

Navigation