Skip to main content
Log in

Blockade of the High-Affinity Interleukin-2 Receptors with Daclizumab High-Yield Process: Pharmacokinetic/Pharmacodynamic Analysis of Single- and Multiple-Dose Phase I Trials

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Daclizumab high-yield process (DAC HYP) is a humanized monoclonal antibody that selectively blocks the α-subunit (CD25) of the high-affinity interleukin-2 receptors, and has shown robust efficacy as a treatment for multiple sclerosis (MS). This work quantitatively characterized the relationship between DAC HYP serum concentrations and saturation of CD25 expressed on antigen-rich target T cells in blood.

Methods

Serial pharmacokinetic and 968 CD25 measurements from three double-blind, randomized, placebo-controlled, phase I studies of DAC HYP (50–300 mg subcutaneous and 200–400 mg intravenous doses or placebo) in healthy volunteers (n = 95) were analyzed using nonlinear mixed-effects modeling. CD25 occupancy was determined using flow cytometry and a fluorescently-labeled DAC HYP-competing antibody.

Results

CD25 occupancy was described using a direct inhibitory sigmoidal maximum effect (E max) model (where DAC HYP fully inhibited CD25 labeling with competing antibody). Two IC50 (serum concentration corresponding to 50 % of maximal inhibition) parameters were used to describe rapid CD25 saturation at initiation of dosing and apparently slower desaturation during DAC HYP washout. Parameter estimates (95 % bootstrap confidence intervals) were: baseline CD25 labeling, 47 % (45–48); DAC HYP IC50(saturation), 0.023 µg/mL (0.005–0.073); IC50(desaturation) 0.86 µg/mL (0.74–0.98); Hill coefficient 5.6 (4.3–6.8).

Conclusions

Based on the developed model, the 150 mg monthly subcutaneous regimen of DAC HYP in subjects with MS is predicted to saturate CD25 on target effector T cells within a few hours of dosing and maintain CD25 saturation during the entire dosing interval. Free CD25 levels return to baseline within 4–6 months of the last DAC HYP dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Malek TR. The biology of interleukin-2. Ann Rev Immunol. 2008;26:453–79.

    Article  CAS  Google Scholar 

  2. Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38(1):13–25.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Martin JF, Perry JS, Jakhete NR, Wang X, Bielekova B. An IL-2 paradox: blocking CD25 on T cells induces IL-2-driven activation of CD56 (bright) NK cells. J Immunol. 2010;185(2):1311–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Sheridan JP, Zhang Y, Riester K, Tang MT, Efros L, Shi J, et al. Intermediate-affinity interleukin-2 receptor expression predicts CD56 (bright) natural killer cell expansion after daclizumab treatment in the CHOICE study of patients with multiple sclerosis. Mult Scler. 2011;17(12):1441–8.

    Article  PubMed  CAS  Google Scholar 

  5. Bielekova B. Daclizumab therapy for multiple sclerosis. Neurotherapeutics. 2013;10(1):55–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31.

    Article  PubMed  Google Scholar 

  7. Wiendl H, Gross CC. Modulation of IL-2R alpha with daclizumab for treatment of multiple sclerosis. Nat Rev Neurol. 2013;9(7):394–404.

    Article  PubMed  CAS  Google Scholar 

  8. Dendrou CA, Plagnol V, Fung E, Yang JH, Downes K, Cooper JD, et al. Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource. Nat Genet. 2009;41(9):1011–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. International Multiple Sclerosis Genetics Consortium (IMSGC), Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–60.

    Article  Google Scholar 

  10. Waldmann TA. Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. J Clin Immunol. 2007;27(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  11. Roche HL. Zenapax label. http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/103749s5059lbl.pdf. Accessed 7 July 2015.

  12. Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, et al. Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med. 1998;338(3):161–5.

    Article  PubMed  CAS  Google Scholar 

  13. Bielekova B, Howard T, Packer AN, Richert N, Blevins G, Ohayon J, et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol. 2009;66(4):483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rose JW, Watt HE, White AT, Carlson NG. Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody. Ann Neurol. 2004;56(6):864–7.

    Article  PubMed  CAS  Google Scholar 

  15. Wynn D, Kaufman M, Montalban X, Vollmer T, Simon J, Elkins J, et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol. 2010;9(4):381–90.

    Article  PubMed  CAS  Google Scholar 

  16. Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue EW, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet. 2013;381(9884):2167–75.

    Article  PubMed  CAS  Google Scholar 

  17. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, et al. Regulatory CD56 (bright) natural killer cells mediate immunomodulatory effects of IL-2R alpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA. 2006;103(15):5941–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Selmaj K. Safety and tolerability of daclizumab HYP treatment in relapsing-remitting multiple sclerosis: results of the DECIDE study. Mult Scler J. 2014;20(S1):67–284.

    Google Scholar 

  19. Kappos L. Primary results of DECIDE: a randomized, double-blind, double-dummy, active-controlled trial of daclizumab HYP vs. interferon β-1a in RRMS patients. Mult Scler J. 2014;20(S1):14–66.

  20. Othman AA, Tran JQ, Tang MT, Dutta S. Population pharmacokinetics of daclizumab high-yield process in healthy volunteers: integrated analysis of intravenous and subcutaneous, single- and multiple-dose administration. Clin Pharmacokinet. 2014;53(10):907–18.

    Article  PubMed  CAS  Google Scholar 

  21. Sheiner LB, Ludden TM. Population pharmacokinetics/dynamics. Ann Rev Pharmacol Toxicol. 1992;32:185–209.

    Article  CAS  Google Scholar 

  22. Gregg R, Smith CM, Clark FJ, Dunnion D, Khan N, Chakraverty R, et al. The number of human peripheral blood CD4+ CD25 high regulatory T cells increases with age. Clin Exp Immunol. 2005;140(3):540–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA, et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 2008;181(3):1835–48.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Hampras SS, Nesline M, Wallace PK, Odunsi K, Furlani N, Davis W, et al. Predictors of immunosuppressive regulatory T lymphocytes in healthy women. J Cancer Epidemiol. 2012;2012:191090.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Othman.

Ethics declarations

The studies that contributed data to this analysis were funded by Facet, which has been acquired by AbbVie. The authors were responsible for analysis and interpretation of the data, and writing and reviewing the manuscript. AbbVie and Biogen reviewed and approved the publication. Drs. Minocha, Sheridan, and Othman are employees and shareholders of AbbVie, and Dr. Tran is an employee and shareholder of Biogen. DAC HYP is currently under development by AbbVie and Biogen for the treatment of MS. The authors declare no other relationships or activities that could appear to have influenced the submitted work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minocha, M., Tran, J.Q., Sheridan, J.P. et al. Blockade of the High-Affinity Interleukin-2 Receptors with Daclizumab High-Yield Process: Pharmacokinetic/Pharmacodynamic Analysis of Single- and Multiple-Dose Phase I Trials. Clin Pharmacokinet 55, 121–130 (2016). https://doi.org/10.1007/s40262-015-0305-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0305-z

Keywords

Navigation