Skip to main content
Log in

Optimal Sampling Scheme for Estimation of Intraocular Pressure Diurnal Curves in Glaucoma Trials

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Effective control of intraocular pressure (IOP) is essential for the successful management of glaucoma. IOP exhibits diurnal variation, yet continuous monitoring is impractical. To date, no clear evidence exists on the number of sampling timepoints required to characterize diurnal IOP and when those measurements should be collected. The objective of this study was to develop an optimized sampling scheme to estimate diurnal IOP and to provide sampling windows for practicality.

Methods

Baseline IOP values for glaucoma patients were collected from the published literature. A population model-based meta-analysis was performed to develop a model for diurnal IOP that accounts for covariates and inter-study variability. Optimization was performed using the D-optimality criteria to determine optimal sampling times. In addition, various reduced sampling designs were tested to investigate the minimum number of sampling timepoints to precisely estimate diurnal IOP. Also, sampling windows were calculated around the final optimal sampling times to allow flexibility in data collection. The final reduced optimized model was validated by simulating and estimating 500 datasets with reduced optimal sampling times.

Results

The final baseline IOP model included type of glaucoma as a covariate. Bootstrap analysis and visual predictive check plots revealed the adequacy of the model to describe the observed IOP data. Optimization results indicated an increasing trend in bias with decreasing sampling timepoints. A reduced model with four sampling times resulted in acceptable precision (<40 %). Restricting the sampling time between 8 a.m. and 4 p.m. underestimates the fluctuation in diurnal IOP. Sampling windows with ≥95 % efficiency were calculated around the optimized sampling times. Validation results indicated acceptable precision and relative bias for model estimates in the reduced optimized model.

Conclusion

A physiologically based mechanistic model was developed to describe the diurnal variation in baseline IOP and inter-study variability was estimated on key diurnal model parameters. Optimization of the final covariate model indicated a reduced sampling time of at least four samples should be collected at 5:45 a.m., 2:15 p.m., 8:00 p.m., and 12:00 a.m. for reliable estimation of diurnal IOP variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shiose Y. Intraocular pressure: new perspectives. Surv Ophthalmol. 1990;34(6):413–35.

    Article  CAS  PubMed  Google Scholar 

  2. Zeimer RC. Circadian variations in intraocular pressure. In: Ritch R, Sheilds MB, Krupin T, editors. The glaucomas. St. Louis: CV Mosby; 1989. p. 319–35.

    Google Scholar 

  3. Quaranta L, Katsanos A, Russo A, Riva I. 24-Hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv Ophthalmol. 2013;58(1):26–41.

    Article  PubMed  Google Scholar 

  4. Konstas AG, Lake S, Economou AI, Kaltsos K, Jenkins JN, Stewart WC. 24-hour control with a latanoprost-timolol fixed combination vs timolol alone. Arch Ophthalmol. 2006;124(11):1553–7.

    Article  CAS  PubMed  Google Scholar 

  5. Konstas AG, Mikropoulos D, Kaltsos K, Jenkins JN, Stewart WC. 24-hour intraocular pressure control obtained with evening- versus morning-dosed travoprost in primary open-angle glaucoma. Ophthalmology. 2006;113(3):446–50.

    Article  PubMed  Google Scholar 

  6. Konstas AG, Maltezos AC, Gandi S, Hudgins AC, Stewart WC. Comparison of 24-hour intraocular pressure reduction with two dosing regimens of latanoprost and timolol maleate in patients with primary open-angle glaucoma. Am J Ophthalmol. 1999;128(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  7. Orzalesi N, Rossetti L, Bottoli A, Fogagnolo P. Comparison of the effects of latanoprost, travoprost, and bimatoprost on circadian intraocular pressure in patients with glaucoma or ocular hypertension. Ophthalmology. 2006;113(2):239–46.

    Article  PubMed  Google Scholar 

  8. Fogagnolo P, Orzalesi N, Ferreras A, Rossetti L. The circadian curve of intraocular pressure: can we estimate its characteristics during office hours? Invest Ophthalmol Vis Sci. 2009;50(5):2209–15.

    Article  PubMed  Google Scholar 

  9. Stewart WC, Konstas AG, Nelson LA, Kruft B. Meta-analysis of 24-hour intraocular pressure studies evaluating the efficacy of glaucoma medicines. Ophthalmology. 2008;115(7):1117–22.

    Article  PubMed  Google Scholar 

  10. Orzalesi N, Rossetti L, Bottoli A, Fumagalli E, Fogagnolo P. The effect of latanoprost, brimonidine, and a fixed combination of timolol and dorzolamide on circadian intraocular pressure in patients with glaucoma or ocular hypertension. Arch Ophthalmol. 2003;121(4):453–7.

    Article  CAS  PubMed  Google Scholar 

  11. Konstas AG, Katsimbris JM, Lallos N, Boukaras GP, Jenkins JN, Stewart WC. Latanoprost 0.005 % versus bimatoprost 0.03 % in primary open-angle glaucoma patients. Ophthalmology. 2005;112(2):262–6.

    Article  PubMed  Google Scholar 

  12. Liu JH, Zhang X, Kripke DF, Weinreb RN. Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Invest Ophthalmol Vis Sci. 2003;44(4):1586–90.

    Article  PubMed  Google Scholar 

  13. Yuksel N, Gok M, Altintas O, Caglar Y. Diurnal intraocular pressure efficacy of the timolol-brimonidine fixed combination and the timolol-dorzolamide fixed combination as a first choice therapy in patients with pseudoexfoliation glaucoma. Curr Eye Res. 2011;36(9):804–8.

    Article  CAS  PubMed  Google Scholar 

  14. Eren MH, Gungel H, Altan C, Pasaoglu IB, Sabanci S. Comparison of dorzolamide/timolol and latanoprost/timolol fixed combinations on diurnal intraocular pressure control in primary open-angle glaucoma. J Ocul Pharmacol Ther. 2012;28(4):381–6.

    Article  CAS  PubMed  Google Scholar 

  15. Konstas AG, Katsimpris IE, Kaltsos K, Georgiadou I, Kordelou A, Nelson LA, et al. Twenty-four-hour efficacy of the brimonidine/timolol fixed combination versus therapy with the unfixed components. Eye (Lond). 2008;22(11):1391–7.

    Article  CAS  PubMed  Google Scholar 

  16. Topouzis F, Melamed S, Danesh-Meyer H, Wells AP, Kozobolis V, Wieland H, et al. A 1-year study to compare the efficacy and safety of once-daily travoprost 0.004 %/timolol 0.5 % to once-daily latanoprost 0.005 %/timolol 0.5 % in patients with open-angle glaucoma or ocular hypertension. Eur J Ophthalmol. 2007;17(2):183–90.

    CAS  PubMed  Google Scholar 

  17. Schnober D, Hofmann G, Maier H, Scherzer ML, Ogundele AB, Jasek MC. Diurnal IOP-lowering efficacy and safety of travoprost 0.004 % compared with tafluprost 0.0015 % in patients with primary open-angle glaucoma or ocular hypertension. Clin Ophthalmol. 2010;4:1459–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Teus MA, Miglior S, Laganovska G, Volksone L, Romanowska-Dixon B, Gos R, et al. Efficacy and safety of travoprost/timolol vs dorzolamide/timolol in patients with open-angle glaucoma or ocular hypertension. Clin Ophthalmol. 2009;3:629–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Konstas AG, Hollo G, Irkec M, Tsironi S, Durukan I, Goldenfeld M, et al. Diurnal IOP control with bimatoprost versus latanoprost in exfoliative glaucoma: a crossover, observer-masked, three-centre study. Br J Ophthalmol. 2007;91(6):757–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Liu JH, Medeiros FA, Slight JR, Weinreb RN. Diurnal and nocturnal effects of brimonidine monotherapy on intraocular pressure. Ophthalmology. 2010;117(11):2075–9.

    Article  PubMed  Google Scholar 

  21. Grippo TM, Liu JH, Zebardast N, Arnold TB, Moore GH, Weinreb RN. Twenty-four-hour pattern of intraocular pressure in untreated patients with ocular hypertension. Invest Ophthalmol Vis Sci. 2013;54(1):512–7.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Liu JH, Kripke DF, Weinreb RN. Comparison of the nocturnal effects of once-daily timolol and latanoprost on intraocular pressure. Am J Ophthalmol. 2004;138(3):389–95.

    Article  CAS  PubMed  Google Scholar 

  23. Konstas AG, Kozobolis VP, Katsimpris IE, Boboridis K, Koukoula S, Jenkins JN, et al. Efficacy and safety of latanoprost versus travoprost in exfoliative glaucoma patients. Ophthalmology. 2007;114(4):653–7.

    Article  PubMed  Google Scholar 

  24. Konstas AG, Hollo G, Mikropoulos D, Tsironi S, Haidich AB, Embeslidis T, et al. Twenty-four-hour intraocular pressure control with bimatoprost and the bimatoprost/timolol fixed combination administered in the morning, or evening in exfoliative glaucoma. Br J Ophthalmol. 2010;94(2):209–13.

    Article  PubMed  Google Scholar 

  25. Konstas AG, Maltezos A, Mantziris DA, Sine CS, Stewart WC. The comparative ocular hypotensive effect of apraclonidine with timolol maleate in exfoliation versus primary open-angle glaucoma patients. Eye (Lond). 1999;13(Pt 3a):314–8.

    Article  PubMed  Google Scholar 

  26. Orzalesi N, Rossetti L, Invernizzi T, Bottoli A, Autelitano A. Effect of timolol, latanoprost, and dorzolamide on circadian IOP in glaucoma or ocular hypertension. Invest Ophthalmol Vis Sci. 2000;41(9):2566–73.

    CAS  PubMed  Google Scholar 

  27. Quaranta L, Gandolfo F, Turano R, Rovida F, Pizzolante T, Musig A, et al. Effects of topical hypotensive drugs on circadian IOP, blood pressure, and calculated diastolic ocular perfusion pressure in patients with glaucoma. Invest Ophthalmol Vis Sci. 2006;47(7):2917–23.

    Article  PubMed  Google Scholar 

  28. Konstas AG, Boboridis K, Tzetzi D, Kallinderis K, Jenkins JN, Stewart WC. Twenty-four-hour control with latanoprost-timolol-fixed combination therapy vs latanoprost therapy. Arch Ophthalmol. 2005;123(7):898–902.

    Article  CAS  PubMed  Google Scholar 

  29. Konstas AG, Mantziris DA, Cate EA, Stewart WC. Effect of timolol on the diurnal intraocular pressure in exfoliation and primary open-angle glaucoma. Arch Ophthalmol. 1997;115(8):975–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yildirim N, Sahin A, Gultekin S. The effect of latanoprost, bimatoprost, and travoprost on circadian variation of intraocular pressure in patients with open-angle glaucoma. J Glaucoma. 2008;17(1):36–9.

    Article  PubMed  Google Scholar 

  31. Dubiner HB, Sircy MD, Landry T, Bergamini MV, Silver LH, Darell Turner F. Comparison of the diurnal ocular hypotensive efficacy of travoprost and latanoprost over a 44-hour period in patients with elevated intraocular pressure. Clin Ther. 2004;26(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  32. Parrish RK, Palmberg P, Sheu WP. A comparison of latanoprost, bimatoprost, and travoprost in patients with elevated intraocular pressure: a 12-week, randomized, masked-evaluator multicenter study. Am J Ophthalmol. 2003;135(5):688–703.

    Article  CAS  PubMed  Google Scholar 

  33. Konstas AG, Mylopoulos N, Karabatsas CH, Kozobolis VP, Diafas S, Papapanos P, et al. Diurnal intraocular pressure reduction with latanoprost 0.005 % compared to timolol maleate 0.5 % as monotherapy in subjects with exfoliation glaucoma. Eye (Lond). 2004;18(9):893–9.

    Article  CAS  Google Scholar 

  34. Lee PW, Doyle A, Stewart JA, Kristoffersen CJ, Stewart WC. Meta-analysis of timolol on diurnal and nighttime intraocular pressure and blood pressure. Eur J Ophthalmol. 2010;20(6):1035–41.

    PubMed  Google Scholar 

  35. Retout S, Duffull S, Mentre F. Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs. Comput Methods Programs Biomed. 2001;65(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  36. Durairaj C, Shen J, Cherukury M. Mechanism-based translational pharmacokinetic—pharmacodynamic model to predict intraocular pressure lowering effect of drugs in patients with glaucoma or ocular hypertension. Pharm Res. 2014;31(8):2095–106.

  37. Kaufman PL, True Gabelt B’A. Production and flow of aqueous humor. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM, editors. Adler’s physiology of the eye. 11th ed. New York: Saunders Elsevier; 2011. p. 274–307.

    Google Scholar 

  38. Larsson LI, Rettig ES, Brubaker RF. Aqueous flow in open-angle glaucoma. Arch Ophthalmol. 1995;113(3):283–6.

    Article  CAS  PubMed  Google Scholar 

  39. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.

    Article  PubMed  Google Scholar 

  40. Jonsson EN, Karlsson MO. Xpose–an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed. 1999;58(1):51–64.

    Article  CAS  PubMed  Google Scholar 

  41. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Nyberg J, Ueckert S, Stromberg EA, Hennig S, Karlsson MO, Hooker AC. PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Programs Biomed. 2012;108(2):789–805.

    Article  PubMed  Google Scholar 

  43. Konstas AG, Quaranta L, Mikropoulos DG, Nasr MB, Russo A, Jaffee HA, et al. Peak intraocular pressure and glaucomatous progression in primary open-angle glaucoma. J Ocul Pharmacol Ther. 2012;28(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  44. Vesti E, Kivela T. Exfoliation syndrome and exfoliation glaucoma. Prog Retin Eye Res. 2000;19(3):345–68.

    Article  CAS  PubMed  Google Scholar 

  45. Alm A, Nilsson SF. Uveoscleral outflow—a review. Exp Eye Res. 2009;88(4):760–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ahn JE, French JL. Longitudinal aggregate data model-based meta-analysis with NONMEM: approaches to handling within treatment arm correlation. J Pharmacokinet Pharmacodyn. 2010;37(2):179–201.

    Article  PubMed  Google Scholar 

  47. Nyberg J, Karlsson MO, Hooker AC. Simultaneous optimal experimental design on dose and sample times. J Pharmacokinet Pharmacodyn. 2009;36(2):125–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is currently an employee of Alkermes, Inc. and owns stock in Alkermes, Inc. The author has declared no potential conflict of interest with the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekar Durairaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durairaj, C. Optimal Sampling Scheme for Estimation of Intraocular Pressure Diurnal Curves in Glaucoma Trials. Clin Pharmacokinet 54, 95–105 (2015). https://doi.org/10.1007/s40262-014-0183-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0183-9

Keywords

Navigation