Skip to main content
Log in

Influence of thermal temperature on the structure and sealed micropores of stabilized polyacrylonitrile fibers

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Thermal stabilization is an important process in carbon fibers’ production, during which the polyacrylonitrile fibers are heated from 180 °C to 280 °C in air. In this study, the samples were characterized by X-ray diffraction, Fourier infrared spectroscopy, differential scanning calorimetry, small angle X-ray Scattering(SAXS) and mechanical tensile tests. A new rule was suggested by the results of structural characterization for the cyclization, dehydrogenation and oxidation reactions that were observed to be drastic from 200 °C to 220 °C, from 220 °C to 250 °C, and in the later period of the thermal stabilization reactions, respectively. The sizes, shapes and distributions of the sealed micropores were obtained from the SAXS data. The breaking elongation was significantly affected by the drastic cyclization and dehydrogenation reactions. The breaking force was affected considerably by the bigger micropores, especially from 220 °C to 250 °C, owing to the drastic dehydrogenation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao Y., Gao Z. M., Li X. S., Guo J. Q., Wen Y. F., Yang Y. G., Chem. J. Chinese Universities, 2009, 30(10), 2100

    CAS  Google Scholar 

  2. Mun S. Y., Lim H. M., Lee D. J., Thermochim. Acta, 2015; 600, 62

    Article  CAS  Google Scholar 

  3. Gao Y., Huang K. K., Hua Z., Gao Z. M., Li X. S., Chem. J. Chinese Universities, 2007, 28(10), 2014

    CAS  Google Scholar 

  4. He D. X., Wang C. G., Bai Y. J., Lun N., Zhu B., Wang Y. X., J. Ma-ter. Sci., 2006, 42(17), 7402

    Article  Google Scholar 

  5. Ozbek S., Isaac D. H., Carbon, 2000; 38, 2007

    Article  CAS  Google Scholar 

  6. Johnson D. J., Tyson C. N., Br. J. Appl. Phys., 1969, 2(6), 787

    Google Scholar 

  7. Bennett S. C., Johnson D. J., Carbon, 1979, 17(1), 25

    Article  CAS  Google Scholar 

  8. Barnet F. R., Norr M. K., Carbon, 1973, 11(4), 281

    Article  CAS  Google Scholar 

  9. Wang H. L., Zhao Y., Ma L. K., Fan P. H., Xu C. B., Jiao C. L., Lin A. J., Chem. J. Chinese Universities, 2016, 37(2), 335

    CAS  Google Scholar 

  10. Wu B., Zheng G., Liu X. Z., Sun Y., Liu H. B., Zhu J. W., Chem. J. Chinese Universities, 2016, 37(10), 1891

    CAS  Google Scholar 

  11. Chai X. Y., Zhu C. Z., He C. X., Zhang G. Z., Liu J. H., Acta Physi-co-Chimica Sinica, 2014, 30(4), 753

    CAS  Google Scholar 

  12. Wu S. H., Qin X. H., J. Therm. Anal. Calorim, 2014, 116(1), 303

    Article  CAS  Google Scholar 

  13. Gupta A. K., Singhal R. P., Maiti A. K., Agarwal V. K., J. Appl. Polym. Sci., 1982; 27, 4101

    Article  CAS  Google Scholar 

  14. Bhat G. S., Cook F. L., Abhiraman A. S., J. Appl. Polym. Sci., 1990; 28, 377

    Article  CAS  Google Scholar 

  15. Loidl D., Paris O., Burghammer M., Rieke C., Peterlik H., Phys. Rev. Lett., 2005, 95(22), 225501

    Article  CAS  Google Scholar 

  16. Xiao H., Lu Y. G., Zhao W. Z., J. Mater. Sci., 2014, 49(2), 794

    Article  CAS  Google Scholar 

  17. Gupta V. B., Kumar S., J. Appl. Polym. Sci., 1981; 26, 1885

    Article  CAS  Google Scholar 

  18. Shin H. K., Park M., Kang P. H., J. Ind. Eng. Chem., 2014, 41(9), 6815

    Google Scholar 

  19. Astrom J. A., Krasheninnikov A. V., Nordlund K., Phys. Rev. Lett., 2004, 93(21), 215503

    Article  CAS  Google Scholar 

  20. Ju A. Q., Guang S. Y., Xu H. Y., Carbon, 2013; 54, 323

    Article  CAS  Google Scholar 

  21. Zhang W. X., Liu J., Wu G., Carbon, 2003, 41(14), 2805

    Article  CAS  Google Scholar 

  22. Cao F., Zhao L., Chem. J. Chinese Universities, 2011, 32(12), 2711

    Google Scholar 

  23. Fu Z. Y., Gui Y., Cao C. L., Liu B. J., Zhou C., Zhang H. X., J. Mater. Sci., 2014, 49(7), 2864

    Article  CAS  Google Scholar 

  24. Huang Z. F., Wang C. Z., Wei Y. J., Chem. J. Chinese Universities, 2004, 25(6), 1124

    CAS  Google Scholar 

  25. Shioya M., Takaku A., J. Appl. Phys., 1985, 58(11), 4074

    Article  CAS  Google Scholar 

  26. Bale H. D., Schmidt P. W., Phys. Rev. Lett., 1984, 53(6), 596

    Article  CAS  Google Scholar 

  27. Benmore C. J., Izdebski T., Yarger J. L., Phys. Rev. Lett., 2012, 108(17), 178102

    Article  CAS  Google Scholar 

  28. Kim H. S., Shioya M., Takaku A., J. Mater. Sci., 1999, 34(14), 3307

    Article  CAS  Google Scholar 

  29. Li W., Long D., Miyawaki J., Qiao W., Ling L., Mochida I., Yoon S. H., J. Mater. Sci., 2012, 47(2), 919

    Article  Google Scholar 

  30. Jain M. K., Abhiraman A. S., J. Mater. Sci., 1987, 22(1), 278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongmin Gao or Xiaolei Che.

Additional information

Supported by the Special Foundation of State Major Scientific Instrument and Equipment Development of China (No.2012YQ24026407) and the Fund of the China Education Resource System(No.CERS-1-3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Zhao, X., Gao, Z. et al. Influence of thermal temperature on the structure and sealed micropores of stabilized polyacrylonitrile fibers. Chem. Res. Chin. Univ. 33, 312–317 (2017). https://doi.org/10.1007/s40242-017-6262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6262-3

Keywords

Navigation