Skip to main content
Log in

Application of a self-developed proton transfer reaction-mass spectrometer to on-line monitoring trace volatile organic compounds in ambient air

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Real-time and on-line monitoring volatile organic compounds(VOCs) are valuable for real-time evaluating air quality and monitoring the key source of pollution. A self-developed proton transfer reaction-mass spectrometer( PTR-MS) was constructed and applied to on-line monitoring trace VOCs in ambient air in Hefei. With the help of a self-developed catalytic converter, the background signal of the instrument was detected and the stability of the instrument was evaluated. The relative standard deviation of signal at m/z 21 was only 0.74% and the detection limit of PTR-MS was 97 part per trillion(97×10–12, volume ratio). As a case of the air monitoring in Hefei, the ambient air at Dongpu reservoir spot was on-line monitored for 13 d with our self-developed PTR-MS. Meanwhile, a solid-phase micro-extraction(SPME) technique coupled to gas chromatography-mass spectrometry/mass spectrometry (GC-MS/MS) was also used for the off-line detection of the air. The results show that our self-developed PTR-MS can be used for the on-line and long-term monitoring of VOCs in air at part per trillion level, and the change trend of VOCs concentration monitored with PTR-MS was consistent with that detected with the conventional SPME-GC-MS. This self-developed PTR-MS can fully satisfy the requirements of air quality monitoring and real-time monitoring of the key pollution sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jankowski M. J., Olsen R., Nielsen C. J., Thomassen Y., Molander P., Environ. Sci. Proc. Imp., 2014, 16(10), 2423

    Article  CAS  Google Scholar 

  2. Schripp T., Etienne S., Fauck C., Fuhrmann F., Märk L., Salthammer T., Indoor Air, 2014, 24(2), 178

    Article  CAS  Google Scholar 

  3. Feng L. L., Hu X. F., Yu X. J., Zhang W. Y., Chin. J. Chromatogr., 2016, 34(2), 209

    CAS  Google Scholar 

  4. Barreira L. M. F., Parshintsev J., Kärkkäinen N., Hartonen K., Jussila M., Kajos M., Kulmala M., Riekkola M. L., Atmos. Environ., 2015, 115, 214

    Article  CAS  Google Scholar 

  5. Ras M. R., Marcé R. M., Borrull F., Talanta, 2008, 77(2), 774

    Article  CAS  Google Scholar 

  6. Mokbel H., Dine E. J. A., Elmoll A., Liaud C., Millet M., Environ. Sci. Pollut. R, 2016, 23(8), 8053

    Article  CAS  Google Scholar 

  7. Blake R. S., Monks P. S., Ellis A. M., Chem. Rev., 2009, 109(3), 861

    Article  CAS  Google Scholar 

  8. Sulzer P., Sulzer P., Edtbauer A., Hartungen E., Jürschik S., Jordan A., Hanel G., Feil S., Jaksch, S., Märk L., Märk T. D., Int. J. Mass Spectrom., 2012, 321/322, 66

    Article  Google Scholar 

  9. Hayeck N., Temime-Roussel B., Gligorovski S., Mizzi A., Gemayel R., Tlili S., Maillot P., Pic N., Vitrani T., Poulet I., Wortham H., Int. J. Mass Spectrom., 2015, 392, 102

    Article  CAS  Google Scholar 

  10. Granato D., Koot A., van Ruth S. M., J. Sci. Food Agric., 2015, 95(13), 2668

    Article  CAS  Google Scholar 

  11. Gonzalez-Mendez R., Reich D. F., Mullock S. J., Corlett C. A., Mayhew C. A., Int. J. Mass Spectrom., 2015, 385, 13

    Article  CAS  Google Scholar 

  12. Schmidberger T., Gutmann R., Bayer K., Kronthaler J., Huber R., Biotechnol. Prog., 2014, 30(2), 496

    Article  CAS  Google Scholar 

  13. Zou X., Kang M., Li A. Y., Shen C. Y., Chu Y. N., Anal. Chem., 2016, 88(6), 3144

    Article  CAS  Google Scholar 

  14. Liu R. L., Huang X. F., He L. Y., Yuan B., Lu S. H., Feng N., Acta Scien. Circum., 2012, 32(10), 2540

    CAS  Google Scholar 

  15. Shen C. Y., Li J. Q., Wang H. Z., Wang Y. J., Wang H. M., Huang C. Q., Li H., Liu S., Chu Y. N., Chem. J. Chinese Universities, 2012, 33(2), 263

    CAS  Google Scholar 

  16. Li J. Q., Shen C. Y., Wang H. M., Han H. Y., Zheng P. C., Xu G. H., Jiang H. H., Chu Y. N., Chin. J. Anal. Chem., 2008, 36(1), 132

    CAS  Google Scholar 

  17. Shen C. Y., Li J. Q., Wang H. Z., Zhi Z. H., Wang H. M., Huang C. Q., Liu S., Jiang H. H., Chu Y. N., Chin. J. Anal. Chem., 2012, 40(5), 773

    CAS  Google Scholar 

  18. Shen C. Y., Niu W. Q., Huang C. Q., Xia L., Lu Y., Wang S. L., Wang H. Z., Jiang H. H., Chu Y. N., Int. J. Mass Spectrom., 2014, 371, 36

    Article  CAS  Google Scholar 

  19. Shen C. Y., Wang H. M., Huang C. Q., Lu Y., Xia L., Chen X. J., Wang H. Z., Chu Y. N., Chem. J. Chinese Universities, 2015, 36(2), 236

    CAS  Google Scholar 

  20. Shen C. Y., Li J. Q., Han H. Y., Wang H. M., Jiang H. H., Chu Y. N., Int. J. Mass Spectrom., 2009, 285(1), 100

    Article  CAS  Google Scholar 

  21. Wang Y. J., Shen C. Y., Li J. Q., Jiang H. H., Chu Y. N., Mass Spectrometry Handbook, Chapter 28, John Wiley & Sons, Hoboken, 2012, 605

    Book  Google Scholar 

  22. Lindinger W., Hansel A., Jordan A., Int. J. Mass Spectrom., 1998, 173(3), 191

    Article  CAS  Google Scholar 

  23. Hansel A., Jordan A., Holzinger R., Prazeller P., Vogel W., Lindinger W., Int. J. Mass Spectrom., 1995, 149, 609

    Article  Google Scholar 

  24. Anicich V. G., An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics, JPL Publication 03-19, Pasadena, 2003, 378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyin Shen.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21477132, 21577145), the National Key Technology Research and Development Program of China(No.2015BAI01B04), the National Key Research Program of China (No.2016YFC0200200), the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology of China(No.2014FXCX007) and the Functional Development Program of Instrument and Equipment in Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Zou, X., Lu, Y. et al. Application of a self-developed proton transfer reaction-mass spectrometer to on-line monitoring trace volatile organic compounds in ambient air. Chem. Res. Chin. Univ. 32, 565–569 (2016). https://doi.org/10.1007/s40242-016-5462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5462-6

Keywords

Navigation