Skip to main content
Log in

Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Percutaneous coronary intervention(PCI) has become an important method for the treatment of the patients with coronary heart disease; however, problems, such as vascular endothelial inflammation, late thrombosis, and stent restenosis still exist as a result of poor biocompatibility of the materials. To enhance the biocompatibility, methoxy poly(ethylene glycol)(mPEG) was immobilized on the surface of AISI 316 grade stainless steel(SS)(AISI: American Iron and Steel Institute). First, silanized mPEG was synthesized by the direct coupling of mPEG with 3-isocyanatopropyltriethoxysilane(IPTS) via urethane bonds, and the silanized mPEG was then grafted on the surface of SS that was hydroxylated with piranha solution. The results obtained from contact angle goniometry, X-ray photoelectron spectroscopy(XPS), and atomic force microscopy(AFM) confirm that the mPEG modified steel contained more C and Si and less Fe and Cr on its surface, exhibiting a morphological change and decrease in the contact angle. The biocompatibility of the mPEG modified SS was evaluated with fibrinogen adsorption, platelet activation and adhesion, and human umbilical vein endothelial cell(HUVEC) adhesion. Fibrinogen adsorption, platelet activation, and adhesion were clearly suppressed on the surface-modified steel. In addition, human umbilical vein endothelial cell(HUVEC) could adhere and proliferate on the surface of the mPEG-modified SS. This study indicates that the modification of 316L SS with mPEG could enhance the biocompatibility and provide a primary experimental foundation for the development of next-generation coronary stent materials for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamilos M., Ribichini F., Ostojic M. C., Ferrero V., Orlic D., Vassanelli C., Karanovic N., Sarno G., Cuisset T., Vardas P. E., Wijns W., J. Cardiovasc. Transl. Res., 2014, 7(4), 406

    Article  Google Scholar 

  2. Togni M., Windecker S., Cocchia R., Wenaweser P., Cook S., Billinger M., Meier B., Hess O. M., Journal of the American College of Cardiology, 2005, 46(2), 231

    Article  CAS  Google Scholar 

  3. Kim J. W., Suh S. Y., Choi C. U., Na J. O., Kim E. J., Rha S. W., Park C. G., Seo H. S., Oh D. J., JACC Cardiovasc Interv., 2008, 1(1), 65

    Article  Google Scholar 

  4. Zhang C. H., Xu X. H., Zhu T. B., Yan X. L., Yao K. D., Materials Review, 2007, 21(2), 120

    Google Scholar 

  5. Taylor A., Ed.: Sigwart U., Chapter Metals in Endoluminal Stenting, W. B. Saunders Company Ltd., London, 1996, 28

  6. Lee J. H., Lee H. B., Andrade J. D., Prog. Polym. Sci., 1995, 20(6), 1043

    Article  CAS  Google Scholar 

  7. Zhang F., Kang E. T., Neoh K. G., Wang P., Tan K. L., Biomaterials, 2001, 22(12), 1541

    Article  CAS  Google Scholar 

  8. Tosatti S., Paul S. M., Askendal A., van de Vondele S., Hubbell J. A., Tengvall P., Textor M., Biomaterials, 2003, 24(27), 4949

    Article  CAS  Google Scholar 

  9. Xu Z. K., Nie F. Q., Qu C., Wan L. S., Wu J., Yao K., Biomaterials, 2005, 26(6), 589

    Article  CAS  Google Scholar 

  10. Okner R., Domba A. J., Mandler D., New J. Chem., 2009, 33, 1596

    Article  CAS  Google Scholar 

  11. Vahter M., Berglund M., Akesson A., Lidén C., Environ. Res., 2002, 88(3), 145

    Article  CAS  Google Scholar 

  12. Denkhaus E., Salnikow K., Crit. Rev. Oncol. Hematol., 2002, 42(1), 35

    Article  CAS  Google Scholar 

  13. Fleming C. J., Burden A. D., Forsyth A., Contact Dermatitis, 1999, 41(5), 251

    Article  CAS  Google Scholar 

  14. Harris J. M., Poly(ethyleneglycol) Chemistry, Plenum Press, New York, 1992, 1

    Google Scholar 

  15. Zdyrko B., Klep V., Li X., Kang Q., Minko S., Wen X., Luzinov I., Mater. Sci. Eng. C, 2009, 29(3), 680

    Article  CAS  Google Scholar 

  16. Murthy R., Shell C. E., Grunlan M. A., Biomaterials, 2009, 30(13), 2433

    Article  CAS  Google Scholar 

  17. Kang C. K., Lee Y. S., J. Mater. Sci. Mater. Med., 2007, 18(7), 1389

    Article  CAS  Google Scholar 

  18. Hu X. Y., Zhang Y. X., Yu Q., Chen H., Chem. J. Chinese Universities, 2009, 30(3), 613

    CAS  Google Scholar 

  19. Yang J., Gao J. C., Chang P., Journal of Functional Materials, 2008, 39(5), 811

    CAS  Google Scholar 

  20. Seongbong J., Park K., Biomaterials, 2000, 21(6), 605

    Article  Google Scholar 

  21. Wei J., Ravn D. B., Gram L., Kingshotta P., Colloids and Surfaces B: Biointerfaces, 2003, 32(4), 275

    Article  CAS  Google Scholar 

  22. Zhao T., Li Y., Gao Y., Xiang Y., Chen H., Zhang T., Mater Sci. Mater Med., 2011, 22(10), 2311

    Article  CAS  Google Scholar 

  23. Johnson C. A. Jr., Snyder T. A., Woolley J. R., Wagner W. R., Artif. Organs, 2008, 32(2), 136

    Article  CAS  Google Scholar 

  24. Yu H. K., Shanghai Measurement and Testing, 2003, 30(4), 45

    Google Scholar 

  25. Yang J., Gao J. C., Chang P., Wang J. H., Plasma Science and Technology, 2008, 10(2), 189

    Article  CAS  Google Scholar 

  26. Thierry B., Merhi Y., Bilodeau L., Trépanier C., Tabrizian M., Biomaterials, 2002, 23(14), 2997

    Article  CAS  Google Scholar 

  27. Eidelman R. S., Hennekens C. H., Eur. Heart J., 2003, 24(6), 499

    Article  Google Scholar 

  28. van Enmckevort H. J., Dass D. V., Langdon A. G., Coll. Inter. Sci., 1984, 98, 138

    Article  Google Scholar 

  29. Goodman S. L., J. Biomed. Mater. Res., 1999, 45(3), 240

    Article  CAS  Google Scholar 

  30. Ko T. M., Lin J. C., Cooper L., Biomaterials, 1993, 14(9), 657

    Article  CAS  Google Scholar 

  31. Huang J., Investigation of Biocompatibility of Polyethersulf One and Sulfonated Olyethersulfone Used as Blood Purification Membranes, Sichuan University, Chengdu, 1999

    Google Scholar 

  32. Ko Y. G., Kim Y. H., Park K. D., Lee H. J., Lee W. K., Park H. D., Kim S. H., Lee G. S., Ahn D. G., Biomaterials, 2001, 22, 2115

    Article  CAS  Google Scholar 

  33. Xu Z. K., Nie F. Q., Qu C., Wan L. S., Wu J. Yao K., Biomaterials, 2005, 26(6), 589

    Article  CAS  Google Scholar 

  34. Saito T., Hasebe T., Yohena S., Matsuoka Y., Kamijo A., Takahashi K., Suzuki T., Diam. Relat. Mater., 2005, 14(3–7), 1116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Additional information

Supported by the Bethune Frontier Interdisciplinary Innovation Project of Jilin University, China(No.2013106020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Zhao, L., Shi, Y. et al. Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility. Chem. Res. Chin. Univ. 31, 651–657 (2015). https://doi.org/10.1007/s40242-015-5027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5027-0

Keywords

Navigation