Skip to main content
Log in

One-pot hydrothermal synthesis of rGO-Fe3O4 hybrid nanocomposite for removal of Pb(II) via magnetic separation

  • Published:
Chemical Research in Chinese Universities Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The reduced graphene oxide-Fe3O4(rGO-Fe3O4) hybrid nanocomposite was prepared via a one-pot facile hydrothermal method for adsorption of heavy metal ions. The results of compositional and morphological characterizations show that the Fe3O4 NPs with an average diameter of 20 nm have been uniformly dispersed in rGO sheets. Due to the higher specific surface area of rGO and the magnetic properties of Fe3O4 nanoparticles, the prepared rGO-Fe3O4 hybrid nanosheets showed good adsorption capacity for the removal of Pb(II) from wastewater by simple magnetic separation. The result of control tests show that the adsorption capacity of rGO-Fe3O4 can be influenced by the ratio of ferric chloride(FeCl3) to graphene oxide(GO) during the process of sample preparation and the initial concentration of Pb(II). A better adsorption capacity was 30.68 mg/g at n(FeCl3)/m(GO) ratio of 1:5(mmol:mg) at pH=7.0 with the initial concentration of Pb(II) ions of 80 mg/L, and the experimental data were well fitted with the Langmuir adsorption model. The composite with absorbed Pb(II) can be easily collected by magnetic separation from wastewater because of the excellent magnetism of Fe3O4 NPs. The rGO-Fe3O4 hybrid nanocomposite provides an effective and environment-friendly absorbent with great application potential in water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blowes D. W., Ptacek C. J., Jambor J. L., Environ. Sci. Technol., 1997, 31(12), 3348

    Article  CAS  Google Scholar 

  2. Babel S., Kurniawan T. A., J. Hazard. Mater., 2003, 97, 219

    Article  CAS  Google Scholar 

  3. Gao H. N., Sun Y. M., Zhou J. J., Xu R., Duan H. W., ACS Appl. Mater. Interfaces, 2013, 5, 425

    Article  CAS  Google Scholar 

  4. Fu F. L., Wang Q., J. Environ. Manag., 2011, 92, 407

    Article  CAS  Google Scholar 

  5. Aguado J., Arsuaga J. M., Arencibia A., Lindo M., Gascón V., J. Hazard. Mater., 2009, 163, 213

    Article  CAS  Google Scholar 

  6. Gupta V. K., Carrott P. J. M., Ribeiro Carrott M. M., L. Suhas, Crit. Rev. Env. Sci. Tec., 2009, 39, 783

    Article  Google Scholar 

  7. Parida S. K., Dash S., Patel S., Mishra B. K., Adv. Colloid Interface Sci., 2006, 121, 77

    Article  CAS  Google Scholar 

  8. Lin T. F., Wu J. K., Water Res., 2001, 35, 2049

    Article  CAS  Google Scholar 

  9. An H. K., Park B. Y., Kim D. S., Water Res., 2001, 35, 3551

    Article  CAS  Google Scholar 

  10. Amuda O. S., Giwa A. A., Bello I. A., Biochem. Eng. J., 2007, 36, 174

    Article  CAS  Google Scholar 

  11. Zhou Y., Jiang L., Yan J. W., Wang C. L., Xiao N., Chem. J. Chinese Universities, 2014, 35(3), 619

    CAS  Google Scholar 

  12. Paredes J. I., Rodil S. V., Alonso A. M., Tascon J. M. D., Langmuir, 2008, 24, 10560

    Article  CAS  Google Scholar 

  13. Huang C. C., Bai H., Li C., Shi J. Q., Chem. Commun., 2011, 47, 4962

    Article  CAS  Google Scholar 

  14. Hua M., Zhang S. J., Pan B. C., Zhang W. M., Lü L., Zhang Q. X., J. Hazard. Mater., 2012, 211, 317

    Article  Google Scholar 

  15. Li F., Du X. Y., Yang R. C., Chem. J. Chinese Universities, 2011, 32(8), 1688

    CAS  Google Scholar 

  16. Zubir N. A., Yacou C., Motuzas J., Zhang X. W., Diniz da Costa J. C., Sci. Rep., 2014, 4, 4594

    Article  Google Scholar 

  17. Hummers J. W. S., Offeman R. E., J. Am. Chem. Soc., 1958, 80, 1339

    Article  CAS  Google Scholar 

  18. Xu C., Wang X., Small, 2009, 5, 2212

    Article  CAS  Google Scholar 

  19. Zhang W. X., Cui J. C., Tao C. A., Wu Y. G., Li Z. P., Ma L., Wen Y. Q., Li G. T., Angew. Chem. Int. Ed., 2009, 48, 5864

    Article  CAS  Google Scholar 

  20. Tian Y., Yu B. B., Li X., Li K., J. Mater. Chem., 2011, 21, 2476

    Article  CAS  Google Scholar 

  21. Thomas H. R., Marsden A. J., Walker M., Wilson N. R., Rourke J. P., Angew. Chem. Int. Ed., 2014, 53, 7613

    Article  CAS  Google Scholar 

  22. Chandra V., Park J., Chun Y., Lee J. W., Hwang I. C., Kim K. S., ACS Nano, 2010, 4(7), 3979

    Article  CAS  Google Scholar 

  23. Zhang Y., Chen B., Zhang L. M., Huang J., Chen F. H., Yang Z. P., Yao J. L., Zhang Z. J., Nanoscale, 2011, 3, 1446

    Article  CAS  Google Scholar 

  24. Yang X., Chen C. L., Li J. X., Zhao G. X., Ren X. M., Wang X. K., RSC Adv., 2012, 2, 8821

    Article  CAS  Google Scholar 

  25. Reddad Z., Gerente C., Andres Y., Cloirec P. L., Environ. Sci. Technol., 2002, 36(9), 2067

    Article  CAS  Google Scholar 

  26. Abraham T. N., Kumar R., Misra R. K., Jain S. K., J. Appl. Polym. Sci., 2012, 125, 670

    Article  Google Scholar 

  27. Gollavelli G., Chang C. C., Ling Y. C., ACS Sustainable Chem. Eng., 2013, 1(5), t462

    Article  CAS  Google Scholar 

  28. Hua R., Li Z. K., Chem. Eng. J., 2014, 249, 189

    Article  CAS  Google Scholar 

  29. Zhang C., Sui J. H., Li. J., Tang Y. L., Cai W., Chem. Eng. J., 2012, 210, 45

    Article  CAS  Google Scholar 

  30. Badruddoza A. Z. M., Shawon Z. B. Z., Tay D. W. J., Hidajat K., Uddin M. S., Carbohyd. Polym., 2013, 91, 322

    Article  CAS  Google Scholar 

  31. Madadrang C. J., Kim H. Y., Gao G., Wang N., Zhu J., Feng H., Gorring M., Kasner M. L., Hou S., ACS Appl. Mater. Interfaces, 2012, 4(3), 1186

    Article  CAS  Google Scholar 

  32. Fan L. L., Luo C. N., Li X. J., Lu F. G., Qiu H. M., Sun M., J. Hazard. Mater., 2012, 215, 272

    Article  Google Scholar 

  33. Yang Y. F., Xie Y. L., Pang L. C., Li M., Song X. H., Wen J. G., Zhao H. Y., Langmuir, 2013, 29, 10727

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51438011, 51102005), the Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201331) and the Program for New Century Excellent Talents in University, China(No.NCET-13-0032).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Ma, Y., Zhou, W. et al. One-pot hydrothermal synthesis of rGO-Fe3O4 hybrid nanocomposite for removal of Pb(II) via magnetic separation. Chem. Res. Chin. Univ. 31, 508–513 (2015). https://doi.org/10.1007/s40242-015-4487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-4487-6

Keywords

Navigation