Skip to main content
Log in

Electric field-driven acid-base transformation: proton transfer from acid(HBr/HF) to base(NH3/H2O)

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The proton-transfer between ammonia/water and HF/HBr without and with the stimulus of external electric fields(E ext) was investigated with the ab initio calculations. When external electric field is applied, the proton transfer occurs, resulting in ion-paired H4N+X- and H3O+X-(X=Br and F) from hydrogen-bonded complexes in view of the great changes of geometrical structures, dipole moments, frontier molecular orbitals and potential energy surfaces in the critical external electric fields(E c) of 1.131×107 V/cm for H3N-HBr, 1.378×108 V/cm for H3N-HF, 9.358×107 V/cm for H2O-HBr and 2.304×108 V/cm for H2O-HF, respectively. Furthermore, one or three excess electrons can trigger the proton transfer from H3N-HBr and H3N-HF to H4N+Br- and H4N+F-, while two and four excess electrons can induce the proton transfer from H2O-HBr and H2O-HF to H3O+Br- and H3O+F-, respectively. Compared with that of the analogous NH3/H2O-HCl systems, the strength of E c of proton transfer increases from HBr to HCl and HF for either H3N-HX or H2O-HX series, which is understandable by the fact that the acidity sequence is HBr>HCl>HF. And the larger of acidity of conjugated acid, the smaller of needed E c. On the other hand, the E c for the systems of NH3 with a stronger basicity is generally smaller than that of H2O systems for the same conjugated acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Löwdin P. O., Rev. Mod. Phys., 1963, 35, 724

    Article  Google Scholar 

  2. Dabkowska I., Rak J., Gutowski M., Eur. Phys. J. D., 2005, 35, 429

    Article  CAS  Google Scholar 

  3. Gu J., Wang J., Rak J., Leszczynski J., Angew. Chem., Int. Ed., 2007, 46, 3479

    Article  CAS  Google Scholar 

  4. Sobolewski A. L., Domcke W., Phys. Chem. Chem. Phys., 2004, 6, 2763

    Article  CAS  Google Scholar 

  5. Perun S., Sobolewski A. L., Domcke W., J. Phys. Chem. A, 2006, 110, 9031

    Article  CAS  Google Scholar 

  6. Schwalb N. K., Temps F., J. Am. Chem. Soc., 2007, 129, 9272

    Article  CAS  Google Scholar 

  7. Wagenknecht H. A., Angew. Chem., Int. Ed., 2003, 42, 2454

    Article  CAS  Google Scholar 

  8. Ito T., Rokita S. E., Angew. Chem., Int. Ed., 2004, 43, 1839

    Article  CAS  Google Scholar 

  9. Ghosh A. K., Schuster G. B., J. Am. Chem. Soc., 2006, 128, 4172

    Article  CAS  Google Scholar 

  10. Chen H. Y., Kao C. L., Hsu S. C. N., J. Am. Chem. Soc., 2009, 131, 15930

    Article  CAS  Google Scholar 

  11. Hsueh K. L., Westler W. M., Markley J. L., J. Am. Chem. Soc., 2010, 132, 7908

    Article  CAS  Google Scholar 

  12. Chakravorty D. K., Hammes-Schiffer S., J. Am. Chem. Soc., 2010, 132, 7549

    Article  CAS  Google Scholar 

  13. Snyder J. A., Cazar R. A., Jamka A. J., Tao F. M., J. Phys. Chem., A, 1999, 103, 7719

    Article  CAS  Google Scholar 

  14. Cabaleiro-Lago E. M., Hermida-Ramóm J. M., Rodríguez-Otero J., J. Chem. Phys., 2002, 117, 3160

    Article  CAS  Google Scholar 

  15. Odde S., Mhin B. J., Lee K. H., Tarakeshwar P., Kim K. S., J. Phys. Chem. A, 2006, 110, 7918

    Article  CAS  Google Scholar 

  16. Cherng B., Tao F. M., J. Chem. Phys., 2001, 114, 1720

    Article  CAS  Google Scholar 

  17. Li R. J., Li Z. R., Wu D., Hao X. Y., Li Y., Wang B. Q., Tao F. M., Sun C. C., Chem. Phys. Lett., 2003, 372, 893

    Article  CAS  Google Scholar 

  18. Li R. J., Li Z. R., Wu D., Chen W., Li Y., Wang B. Q., Sun C. C., J. Phys. Chem. A, 2005, 109, 629

    Article  CAS  Google Scholar 

  19. Biczysko M., Latajka Z., Chem. Phys. Lett., 1999, 313, 366

    Article  CAS  Google Scholar 

  20. Odde S., Mhin B. J., Lee S., Lee H. M., Kim K. S., J. Chem. Phys., 2004, 120, 9524

    Article  CAS  Google Scholar 

  21. Arillo-Flores O. I., Ruiz-López M. F., Bernal-Uruchurtu M. I., Theor. Chem. Acc., 2007, 118, 425

    Article  CAS  Google Scholar 

  22. Eustis S. N., Radisic D., Bowen K. H., Bachorz R. A., Haranczyk M., Schenter G. K., Gutowski M., Science, 2008, 319, 936

    Article  CAS  Google Scholar 

  23. Zhou Z. J., Li X. P., Liu Z. B., Li Z. R., Huang X. R., Sun C. C., J. Phys. Chem. A, 2011, 115, 1418

    Article  CAS  Google Scholar 

  24. Ma F., Li Z. R., Xu H. L., Li Z. J., Wu D., Li Z. S., Gu F. L., Chem- PhysChem., 2009, 10, 1112

    CAS  Google Scholar 

  25. Cao Z., Peng Y. X., Yan T. Y., Li S., Li A. L., Voth G. A., J. Am. Chem. Soc., 2010, 132, 11395

    Article  CAS  Google Scholar 

  26. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta F., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Gaussian 09, Revision A. 02, Gaussian Inc., Wallingford, CT, 2009

    Google Scholar 

  27. Møller C., Plesset M. S., Phys. Rev., 1934, 46, 618

    Article  Google Scholar 

  28. Krishnan R., Pople J. A., Int. J. Quantum Chem., 1978, 14, 91

    Article  CAS  Google Scholar 

  29. Kendall R. A., Dunning T. H. Jr., Harrison R. J., J. Chem. Phys., 1992, 96, 6796

    Article  CAS  Google Scholar 

  30. Reed A. E., Weinstock R. B., Weinhold F., J. Chem. Phys., 1985, 83, 735

    Article  CAS  Google Scholar 

  31. Reed A. E. Weinstock R. B., Weinhold F., J. Chem. Phys., 1985, 83, 1736

    Article  CAS  Google Scholar 

  32. Reed A. E., Curitss L. A., Weinhold F., Chem. Rev., 1988, 88, 899

    Article  CAS  Google Scholar 

  33. Lias S. G., Liebman J. F., Levin R. D., J. Phys. Chem., Ref. Data, 1984, 13, 695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Chen.

Additional information

Supported by the Natural Science Foundation of Guangdong Province of China(No.S2013010014476) and the Engagement Fund of Shantou University, China(No.NFC13001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Chai, B., Chen, G. et al. Electric field-driven acid-base transformation: proton transfer from acid(HBr/HF) to base(NH3/H2O). Chem. Res. Chin. Univ. 31, 418–426 (2015). https://doi.org/10.1007/s40242-015-4464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-4464-0

Keywords

Navigation