Skip to main content
Log in

Hg2+-selective fluorescent chemosensor based on cation-π interaction

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Two sulphur-containing 4-aminonaphthalimide derivatives were investigated as Hg2+ fluorescent chemosensors. In CH3CN, both sensors present a remarkable fluorescence enhancement to Cu2+ and Fe3+, but a selective fluorescence quenching to Hg2+ among the other metal ions. A cation-π interaction between Hg2+ and the naphthalimide moiety was proposed and confirmed by the density functional theory(DFT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Silva A. P., Gunaratne. H. N., Gunnlaugsson T., Huxley A. J., McCoy C. P., Rademacher J. T., Rice T. E., Chem. Rev., 1997, 97(5), 1515

    Article  Google Scholar 

  2. Boening D. W., Chemosphere, 2000, 40(12), 1335

    Article  CAS  Google Scholar 

  3. Benoit J. M., Fitzgerald W. F., Damman A. W. H., Environ. Res., 1998, 78(2), 118

    Article  CAS  Google Scholar 

  4. He S., Liu Q., Li Y., Wei F., Cai S., Lu Y., Zeng X., Chem. Res. Chinese Universities, 2014, 30(1), 32

    Article  CAS  Google Scholar 

  5. Su W. Q., Yang B. Q., Chem. Res. Chinese Universities, 2013, 29(4), 657

    Article  CAS  Google Scholar 

  6. Caballero A., Martínez R., Lloveras V., Ratera I., Vidal-Gancedo J., Wurst K., Tárraga A., Molina P., Veciana J., J. Am. Chem. Soc., 2005, 127(45), 15666

    Article  CAS  Google Scholar 

  7. Coskun A., Akkaya E. U., J. Am. Chem. Soc., 2006, 128(45), 14474

    Article  CAS  Google Scholar 

  8. Avirah R. R., Jyothish K., Ramaiah D., Org. Lett., 2007, 9(1), 121

    Article  CAS  Google Scholar 

  9. Kim S. H., Kim J. S., Park S. M., Chang S. K., Org. Lett., 2006, 8(3), 371

    Article  CAS  Google Scholar 

  10. Choi M. J., Kim M. Y., Chang S. K., Chem. Commun., 2001, 17, 1664

    Article  Google Scholar 

  11. Youn N. J., Chang S. K., Tetrahedron Lett., 2005, 46(1), 125

    Article  CAS  Google Scholar 

  12. Moon S. Y., Youn N. J., Park S. M., Chang S. K., J. Org. Chem., 2005, 70(6), 2394

    Article  CAS  Google Scholar 

  13. Cheng Y. F., Zhao D. T., Zhang M., Liu Z. Q., Zhou Y. F., Shu T. M., Li F. Y., Yi T., Huang C. H., Tetrahedron Lett., 2006, 47(36), 6413

    Article  CAS  Google Scholar 

  14. Park S. M., Kim M. H., Choe J. I., No K. T., Chang S. K., J. Org. Chem., 2007, 72(9), 3550

    Article  CAS  Google Scholar 

  15. Lee M. H., Wu J. S., Lee J. W., Jung J. H., Kim J. S., Org. Lett., 2007, 9(13), 2501

    Article  CAS  Google Scholar 

  16. Wu J. S., Hwang I. C., Kim K. S., Kim J. S., Org. Lett., 2007, 9(5), 907

    Article  Google Scholar 

  17. Suelter C., Science, 1970, 168(3933), 789

    Article  CAS  Google Scholar 

  18. McRee D. E., Nat. Struct. Biol., 1998, 5, 8

    Article  CAS  Google Scholar 

  19. Agranoff D. D., Krishna S., Mol. Microbiol., 1998, 28(3), 403

    Article  CAS  Google Scholar 

  20. Pyle A., J. Biol. Inorg. Chem., 2002, 7(7/8), 679

    Article  CAS  Google Scholar 

  21. Masson E., Schlosser M., Org. Lett., 2005, 7(10), 1923

    Article  CAS  Google Scholar 

  22. Murayama K., Aoki K., Inorg. Chim. Acta, 1998, 281(1), 36

    Article  CAS  Google Scholar 

  23. De Wall S. L., Meadows E. S., Barbour L. J., Gokel G. W., J. Am. Chem. Soc., 1999, 121(23), 5613

    Article  Google Scholar 

  24. Reddy A. S., Zipse H., Sastry G. N., J. Phys. Chem. B, 2007, 111(39), 11546

    Article  CAS  Google Scholar 

  25. Zarić S. D., Chem. Phys. Lett., 1999, 311(1), 77

    Google Scholar 

  26. Lau W., Huffman J. C., Kochi J. K., J. Am. Chem. Soc., 1982, 104(20), 5515

    Article  CAS  Google Scholar 

  27. Lau W., Kochi J., J. Org. Chem., 1986, 51(10), 1801

    Article  CAS  Google Scholar 

  28. Fages F., Desvergne J. P., Bouas-Laurent H., Marsau P., Lehn J. M., Kotzyba-Hibert F., Albrecht-Gary A. M., Al-Joubbeh M., J. Am. Chem. Soc., 1989, 111(23), 8672

    Article  CAS  Google Scholar 

  29. Ishikawa J., Sakamoto H., Nakao S., Wada H., J. Org. Chem., 1999, 64(6), 1913

    Article  CAS  Google Scholar 

  30. Yi H. B., Lee H. M., Kim K. S., J. Chem. Theory Comput., 2009, 5(6), 1709

    Article  CAS  Google Scholar 

  31. Lee S., Lee J. H., Pradhan T., Lim C. S., Cho B. R., Bhuniya S., Kim S., Kim J. S., Sens. Actuator B, 2011, 160(1), 1489

    Article  CAS  Google Scholar 

  32. Xu S., Li W., Chen K. C., Chin. J. Chem., 2007, 25(6), 778

    Article  Google Scholar 

  33. Guo X. F., Zhu B. C., Liu Y. Y., Zhang Y., Jia L. H., Qian X. H., Chin. J. Org. Chem., 2006, 26(4), 504

    CAS  Google Scholar 

  34. Springer C. J., Dowell R., Burke P. J., Hadley E., Davies D. H., Blakey D. C., Melton R. G., Niculescu-Duvaz I., J. Med. Chem., 1995, 38(26), 5051

    Article  CAS  Google Scholar 

  35. Tanaka M., Nakamura M., Ikeda T., Ikeda K., Ando H., Shibutani Y., Yajima S., Kimura K., J. Org. Chem., 2001, 66(21), 7008

    Article  CAS  Google Scholar 

  36. Zhang Z. Y., Chen Y. H., Xu D. M., Yang L., Liu A. F., Spectroc. Acta Pt. A, Molec. Biomolec. Spectr., 2013, 105, 8

    Article  Google Scholar 

  37. Miehlich B., Savin A., Stoll H., Preuss H., Chem. Phys. Lett., 1989, 157(3), 200

    Article  CAS  Google Scholar 

  38. Lee C., Yang W., Parr R. G., Phys. Rev. B, 1988, 37(2), 785

    Article  CAS  Google Scholar 

  39. Hay P. J., Wadt W. R., J. Chem. Phys., 1985, 82(1), 270

    Article  CAS  Google Scholar 

  40. Hay P. J., Wadt W. R., J. Chem. Phys., 1985, 82(1), 299

    Article  CAS  Google Scholar 

  41. Hay P. J., Wadt W. R., J. Chem. Phys., 1985, 82(1), 284

    Article  Google Scholar 

  42. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N. B. J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V. M. B., Cossi M., Scalmani G., Rega N., Petersson G. A. N. H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J. I. M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C. J. J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J. C. R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K. V. G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D. R. K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G. C. S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A. P. C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 03, Walligford, CT, 2004

    Google Scholar 

  43. Kuzmič P., Anal. Biochem., 1996, 237(2), 260

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minli Tao.

Additional information

Supported by the National Natural Science Foundation of China(No.21306133) and the Tianjin Research Program of Application Foundation and Advanced Technology, China(No.14JCYBJC22600).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hu, Q., Ma, G. et al. Hg2+-selective fluorescent chemosensor based on cation-π interaction. Chem. Res. Chin. Univ. 30, 910–914 (2014). https://doi.org/10.1007/s40242-014-4094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4094-y

Keywords

Navigation