Skip to main content
Log in

Analysis of the submerged arc in comparison between a pulsed and non-pulsed process

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The submerged-arc welding process has several advantages, e.g., a high deposition rate and a high surface quality. Due to the fact that the arc is burning in a weld cavity, which is formed under a flux blanket and slag, the droplet detachment and the arc behavior in the cavity are not quite clear. Therefore, the conditions under the influence of a pulsed and non-pulsed submerged-arc welding (SAW) process are observed and compared with one another. By using experimental setups and different techniques based on high-speed technology and pressure measurements of the cavity, an intended changing of the cavity size between a pulsed and non-pulsed process can be observed. The results can be detected by high-speed videos taken with a frame rate of 20,000 fps through glass panes, which expose the cavity on one side and through ceramic tubes, which make a connection with the cavity either in welding direction or perpendicular to the welding direction for a short time. Additionally, pressure measurements of the cavity give evidence of a changing size in the cavity by using a pulsed process. Analysis of the videos shows a free droplet detachment without any contact of the droplet with the cavity wall. The welds are carried out using high-strength fine-grained structural steels, which are continuously gaining in importance and therefore are often used in current construction applications. The SAW process has economical advantages, however, with a risk of hydrogen diffusion. Therefore, the knowledge of the cavity size and the droplet conditions are of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kuhlmann U, Dürr A, Schröter F (2005) Hochfeste Feinkornbaustähle im Stahlbau: Anwendung im Stahlbau insbesondere unter der Berücksichtigung der Ermüdungsfestigkeit geschweißter Konstruktionen. Schweißen im Anlagen- und Behälterbau, DVS-Berichte, 236th edn. DVS-Media, Düsseldorf, pp 130–135, ISBN 978-3871556944

    Google Scholar 

  2. NN (2014) Hochfeste und ultrahochfeste grobbleche-gewicht sparen bei optimaler Schweißbarkeit. Voestalpine Grobbleche.

  3. Müller P, Wolff L (1983) Handbuch des unterpulver-schweißens-teil I: verfahren-einstellpraxis-geräte-wirtschaftlichkeit; teil II: schweißzusätze und schweißpulver. DVS-Verlag, Düsseldorf, ISBN 3871550663

    Google Scholar 

  4. Hochreiter G (1995) Unterpulverschweißen in der Praxis. expert-Verlag, Renningen, ISBN 978-3-8169-1062-6

    Google Scholar 

  5. Göttert W, Schofer E, Dirksen D, Tessin F, Gehring M, Peters G, Klingkuscher N (1995) Unterpulverschweißen. ESAB, Solingen

    Google Scholar 

  6. Tanheim H (1942) Die physikalisch-chemischen grundlagen des ellira-verfahrens. Elektroschweißung, No. 2, pp. 17/24

  7. Ostapenko NG, Medowar BI (1947) X-ray research into the zone of a submerged arc. Autogennoc delo No. 11, pp 16/20

  8. Grebelnik FG (1950) X-ray research into the submerged arc welding process. Autom Weld 3:6, ISSN 0005-108X

    Google Scholar 

  9. Gilette RH, Bregmeier RT (1951) Some research techniques for studying arcs in inert gases. Weld J 30:3, ISSN 0043-2296

    Google Scholar 

  10. Erochin AA, Petrov W, Bogatschew MN (1954) Research into highspeed phenomena in the welding arc conducted by cinematography. Autom Weld 7(1):59–64, ISSN 0005-108X

    Google Scholar 

  11. Conn WM (1959) Die technische physik der lichtbogenschweißung. Springer Verlag, Berlin-Göttingen-Heidelberg, ISBN 978-3-540-02478-1

    Book  Google Scholar 

  12. Tybus G (1957) Farbige zeitlupenaufnahmen zur beobachtung des Schweißbades beim UP-Schweißen. Schweißtechnik 7, No. 3, pp. 68/71

  13. Franz U (1965) Vorgänge in der kaverne beim UP-Schweißen Teil 1. Schweißtechnik 15, No. 4, pp. 145/50

  14. Franz U (1966) Vorgänge in der kaverne beim UP-Schweißen teil 2. Schweißtechnik 16, No. 9, pp. 400/04

  15. Franz U, Jain J (1969) Werkstoffübergang beim UP-paralleldrahtschweissen. Schweißtechnik 19, No. 4, pp. 149/53

  16. Eichhorn F, Dilthey U (1971) High-speed X-ray photography for submerged arc welding. Met Constr Br Weld J 3(12):453–456, ISSN 0026-0541

    Google Scholar 

  17. Düren C, Felleisen R, Hieber G (1981) Four beats three in submerged-arc welding. Weld Met Fabr 5/81, ISSN 0043-2245

  18. Mendez PF, Goett G, Guest SD (2014) High speed video of metal transfer in submerged arc welding. IIW DOC. 212-1345-14

  19. Goett G, Gericke A, Uhrlandt D (2015) Optical study of a SAW cavern. IIW DOC. 212-1387-15

  20. Mendez PF, Goett G, Guest SD (2015) High-speed video of metal transfer in submerged arc welding. Weld J 94(10):325s–332s, ISSN 0043-2296

    Google Scholar 

  21. Sharma R, Schäfer J (2015) Diagnosewerkzeuge für das unterpulverschweissen. Im blickpunkt-deutschlands elite: institut für Schweißtechnik und fügetechnik der RWTH Aachen University, Alpha Informationsgesellschaft, Lampertheim, ISSN 1614-8185

  22. Reisgen U, Schäfer J, Willms K (2014) Einflussnahmen der unterpulver-impulstechnologie auf den wasserstoffeintrag hochfester feinkornbaustähle. 33. Assistentenseminar füge- und schweißtechnik, DVS-Berichte, 295th edn. DVS-Media, Düsseldorf, pp 84–88, ISBN 978-3-87155-615-9

    Google Scholar 

  23. Reisgen U, Schäfer J, Willms K (2014) Prozesseinflüsse der unterpulver-impulstechnologie auf den wasserstoffeintrag hochfester feinkornbaustähle. DVS congress-große schweißtechnische tagung, DVS-berichte, 306th edn. DVS-Media, Düsseldorf, pp 262–267, ISBN 978-3-945023-03-7

    Google Scholar 

  24. Reisgen U, Schäfer J, Willms K (2015) Unterpulver-Impulsschweißverfahren zur reduzierung des wasserstoffeintrags beim Schweißen hochfester feinkornbautähle. Schweissen und Schneiden, ISSN 0036-7184

  25. Reisgen U, Schäfer J, Willms K (2015) Pulsed submerged arc welding in order to reduce the hydrogen input during the welding of high-strength fine-grained structural steels. Weld Cut ISSN 1612-3433

  26. Tsuboi J, Terashima H (1973) The behavior of hydrogen in arc welding (report 4): hydrogen dissolution into submerged arc weld metal. J Japan Weld Soc 42 Nr.6, S. 544-553, 1973 JWS, ISSN 0288-4771

Download references

Acknowledgments

This research work was supported by the “Industrielle Gemeinschaftsforschung IGF/AiF” with the reference number 17.351N and the German Research Foundation DFG within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries.” The authors would like to express their thanks for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schäfer.

Additional information

Recommended for publication by Commission XII - Arc Welding Processes and Production Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reisgen, U., Schäfer, J. & Willms, K. Analysis of the submerged arc in comparison between a pulsed and non-pulsed process. Weld World 60, 703–711 (2016). https://doi.org/10.1007/s40194-016-0336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-016-0336-6

Keywords (IIW Thesaurus)

Navigation