Skip to main content
Log in

Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Multi-electrode welding processes are used in various industrial fields for higher productivity. These processes can use many combinations of welding methods, current values and polarities, and electrode alignments. However, this complicates welding phenomena. In this research, we focused on the tandem tungsten inert gas (TIG) arc, which is a relatively simple multi-electrode welding process. We performed a numerical investigation into the tandem TIG arc plasma and weld pool formation to clarify the phenomena involved. The weld spot of a tandem TIG weld is ellipsoidal in appearance and is deeper than that of a single-electrode TIG weld. Reduction in the shear stress of the plasma flow in the tandem TIG weld leads to a deeper penetration. Furthermore, the influence of the electrode alignment is calculated, and it is determined that the weld spot appearance significantly changes. The appearance is strongly related to the arc plasma shape. These numerical results show good agreement with the experimental results, which proves that our model has relatively high reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Fujii H, Sato T, Lu S, Nogi K (2008) Development of an advanced A-TIG (AA-TIG) welding method by control of Marangoni convection. Mater Sci Eng 495:296–303

    Article  Google Scholar 

  2. Chae HB, Kim CH, Kim JH, Rhee S (2008) The effect of shielding gas composition in CO2 laser-gas metal arc hybrid welding. Proc I MechE Part B J Eng Manuf 222:1315–1324

    Article  CAS  Google Scholar 

  3. Kataoka T, Ikeda R, Yasuda K, Hirata Y (2009) Development of low spatter CO2 arc welding process with high frequency pulse current. Sci Technol Weld Join 14:740–746

    Article  Google Scholar 

  4. Era T, Ide A, Uezono T, Hirata Y (2009) Controlled bridge transfer (CBT) gas metal arc process for steel sheets joining. Sci Technol Weld Join 14:493–499

    Article  CAS  Google Scholar 

  5. Nomura K, Morisaki K, Hirata Y (2009) Magnetic control of arc plasma and its modeling. Welding World 53:181–187

    Article  Google Scholar 

  6. Ueyama T, Uezono T, Era T, Tanaka M, Nakata K (2009) Solution to problems of arc interruption and arc length control in tandem pulsed gas metal arc welding. Sci Technol Weld Join 14:305–314

    Article  CAS  Google Scholar 

  7. Zhang G, Xiong J, Gao H, Wu L (2011) Reconstruction of emission coefficients for a non-axisymmetric coupling arc by algebraic reconstruction technique. J Quant Spectrosc Radiat Transf 112:92–99

    Article  CAS  Google Scholar 

  8. Gao Y, Yu Q, Jiang W, Wan X (2010) Reconstruction of three-dimensional arc-plasma temperature fields by orthographic and double-wave spectral tomography. Optics Laser Techn 42:61–69

    Article  CAS  Google Scholar 

  9. Rouffet ME, Wendt M, Goett G, Kozakov R, Schoepp H, Weltmann KD, Uhrlandt D (2010) Spectroscopic investigation of the high-current phase of a pulsed GMAW process. J Physics D App Phys 43:434003

    Article  Google Scholar 

  10. Fan HG, Kovaceivic R (2004) A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J Physics D App Phys 37:2531–2544

    Article  CAS  Google Scholar 

  11. Schnick M, Fussel U, Hertel M, Spille-Kohoff A, Murphy AB (2011) Numerical investigations of arc behavior in gas metal arc welding using ANSYS CFX. Front Mater Sci 5(2):98–108

    Article  Google Scholar 

  12. Schnick M, Fuessel U, Hertel M, Haessler M, Spille-Kohoff A, Murphy AB (2010) Modelling of gas-metal arc welding taking into account metal vapour. J Phys D Applied Phys 43:434008

    Article  Google Scholar 

  13. Tsujimura Y, Tashiro S, Tanaka M (2011) Numerical model of gas metal arc with metal vapor for heat source in welding. Trans JWRI 40(1):25–29

    CAS  Google Scholar 

  14. Yamamoto K, Tanaka M, Tashiro S, Nakata K, Murphy AB (2009) Metal vapor behavior in GTA welding of a stainless steel considering the Marangoni effect. T Electr Electr Eng 4:497–503

    Article  CAS  Google Scholar 

  15. Hu J, Guo H, Tsai HL (2008) Weld pool dynamics and the formation of ripples in 3D gas metal arc welding. Int J Heat Mass Transf 51:2537–2552

    Article  CAS  Google Scholar 

  16. Hu J, Tsai HL (2008) Modeling of transport phenomena in 3D GMAW of thick metals with V groove. J Phys D Applied Phys 41(065202):10

    Google Scholar 

  17. Rao ZH, Zhou J, Liao SM, Thai HL (2010) Three-dimensional modeling of transport phenomena and their effect on the formation of ripples in gas metal arc welding. J Appl Phys 107(054905):14

    Google Scholar 

  18. Dong W, Lu S, Li D, Li Y (2011) GTAW liquid pool convections and the weld shape variations under helium gas shielding. Int J Heat Mass Transf 54:1420–1431

    Article  CAS  Google Scholar 

  19. Freton P, Gonzalez JJ, Gleizes A (2000) Comparison between a two- and a three-dimensional arc plasma configuration. J Phys D Applied Phys 33:2442–2452

    Article  Google Scholar 

  20. Speckhofer G, Schmidt HS (1996) Experimental and theoretical investigation of high-pressure arcs—part II: the magnetically deflected arc (three-dimensional modeling). IEEE Trans Plasma Sci 24(4):1239–1248

    Article  Google Scholar 

  21. Xu G, Hu J, Tsai HL (2008) Three-dimensional modeling of the plasma arc in arc welding. J Appl Phys 104(103301):9

    Google Scholar 

  22. Schnick M, Wilhelm G, Lohse M, Fussel U, Murphy AB (2011) Three-dimensional modeling of arc behavior and gas shield quality in tandem gas-metal arc welding using anti-phase pulse synchronization. J Phys D Applied Phys 44:185205

    Article  Google Scholar 

  23. Ogino Y, Hirata Y, Nomura K (2011) Numerical analysis of the heat source characteristics of a two-electrode TIG arc. J Phys D Applied Phys 44:215202

    Article  Google Scholar 

  24. Murphy AB (2011) A self-consistent three-dimensional model of the arc, electrode and weld pool in gas-metal arc welding. J Phys D Applied Phys 44:194009

    Article  Google Scholar 

  25. Meyer GH (1973) Multidimensional Stefan problems. SIAM J Numer Anal 10(3):522–538

    Article  Google Scholar 

  26. White RE (1983) A modified finite difference scheme for the Stefan problem. Math Comput 41(164):337–347

    Article  Google Scholar 

  27. McKelliget J, Szekely J (1985) Heat transfer and fluid flow in the welding arc. Metallurgical Trans A 17:1139–1148

    Article  Google Scholar 

  28. Debroy T, David SA (1995) Physical processes in fusion welding. Rev Mod Phys 67(1):85–112

    Article  CAS  Google Scholar 

  29. Capitelli M, Devoto RS (1973) Transport coefficients of high-temperature nitrogen. The Phys Fluids 16(11):1835–1841

    Article  CAS  Google Scholar 

  30. Murphy AB (2010) The effect of metal vapour in arc welding. J Phys D Applied Phys 43:434001

    Article  Google Scholar 

  31. Cram LE (1985) Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines. J Phys D Applied Phys 18:401–411

    Article  CAS  Google Scholar 

  32. Menart J, Malik S (2002) Net emission coefficients for argon–iron thermal plasmas. J Phys D Applied Phys 35:867–874

    Article  CAS  Google Scholar 

  33. McNallan MJ, Debroy T (1991) Effect of temperature and composition on surface tension in Fe-Ni-Cr alloys containing sulfur. Metall Mater Trans B 22:557–560

    Google Scholar 

  34. Sahoo P, Debroy T, McNallan MJ (1988) Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy. Metall Mater Trans B 19:483–491

    Article  Google Scholar 

  35. A. A. Amsden and F. H. Harlow: The SMAC method: a numerical technique for calculating incompressible fluid flows. Los Alamos Science Laboratory report, 1970, LA-4370

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Ogino.

Additional information

Doc. IIW-2357, recommended for publication by Study Group SG-212 “The Physics of Welding”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogino, Y., Hirata, Y., Kawata, J. et al. Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc. Weld World 57, 411–423 (2013). https://doi.org/10.1007/s40194-013-0040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-013-0040-8

Keywords (IIW-Thesaurus)

Navigation