Skip to main content

Advertisement

Log in

Concurrent SCI and TBI: Epidemiology, Shared Pathophysiology, Assessment, and Prognostication

  • Traumatic Brain Injury Rehabilitation" (A. K. Wagner, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Traumatic neurologic injuries, such as spinal cord injury (SCI) and traumatic brain injury (TBI), cause long-term disability. “Dual diagnosis” refers to concurrent diagnosis of SCI and TBI following traumatic injury. Rate of dual diagnosis has been increasing in the United States, accounting for 2.46 per 100,000 admissions in 2008. As with isolated SCI and TBI, dual diagnosis more frequently occurs in men and following motor vehicle collisions. At this time, there are only limited data on the pathophysiology, medical complications, and outcomes of patients with dual diagnosis. In this review article, we will discuss the epidemiology, pathophysiology, and functional outcomes after dual diagnosis injury. We will also summarize the clinical presentation and management of common medical complications arising from injury, such as spasticity, dysautonomias (autonomic dysfunction in SCI and paroxysmal sympathetic hyperactivity in TBI), heterotopic ossification, and neuroendocrine dysfunction. It is important to understand the role that dual diagnosis plays in the rehabilitation course and long-term outcomes in order to implement a tailored rehabilitation program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Burke DA, Linden RD, Zhang YP, Maiste AC, Shields CB. Incidence rates and populations at risk for spinal cord injury: a regional study. Spinal Cord. 2001;39:274–8.

    CAS  PubMed  Google Scholar 

  2. •• Ghobrial GM, Amenta PS, Maltenfort M, Williams KA, Harrop JS, Sharan A, et al. Longitudinal incidence and concurrence rates for traumatic brain injury and spine injury—a twenty year analysis. Clin Neurol Neurosurg. 2014;123:174–80. Epidemiologic study using the National Inpatient Sample (NIS) database to determine the incidence and rate of concurrent traumatic brain and spinal cord injuries in the United States between 1988 and 2008.

    PubMed  Google Scholar 

  3. • Macciocchi S, Seel RT, Thompson N, Byams R, Bowman B. Spinal cord injury and co-occurring traumatic brain injury: assessment and incidence. Arch Phys Med Rehabil. 2008;89:1350–7. Cross-sectional matched case-control study in Australia that compares the difference in length of stay and FIM scores for patients with SCI, TBI, and dual diagnosis.

    PubMed  Google Scholar 

  4. Nott MT, Baguley IJ, Heriseanu R, Weber G, Middleton JW, Meares S, et al. Effects of concomitant spinal cord injury and brain injury on medical and functional outcomes and community participation. Top Spinal Cord Inj Rehabil. 2014;20:225–35.

    PubMed  PubMed Central  Google Scholar 

  5. Sharma B, Bradbury C, Mikulis D, Green R. Missed diagnosis of traumatic brain injury in patients with traumatic spinal cord injury. J Rehabil Med. 2014;46:370–3.

    PubMed  Google Scholar 

  6. Tolonen A, Turkka J, Salonen O, Ahoniemi E, Alaranta H. Traumatic brain injury is under-diagnosed in patients with spinal cord injury. J Rehabil Med. 2007;39:622–6.

    PubMed  Google Scholar 

  7. Piatt JH. Detected and overlooked cervical spine injury in comatose victims of trauma: report from the Pennsylvania Trauma Outcomes Study. J. Neurosurg Spine. 2006;5:210–6.

    PubMed  Google Scholar 

  8. Tian H-L, Guo Y, Hu J, Rong B-Y, Wang G, Gao W-W, et al. Clinical characterization of comatose patients with cervical spine injury and traumatic brain injury. J Trauma. 2009;67:1305–10.

    PubMed  Google Scholar 

  9. Krebs J, Katrin Brust A, Tesini S, Guler M, Mueller G, Velstra IM, Frotzler A. Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2014;37:659–60.

    Google Scholar 

  10. Frankel JE, Marwitz JH, Cifu DX, Kreutzer JS, Englander J, Rosenthal M. A follow-up study of older adults with traumatic brain injury: taking into account decreasing length of stay. Arch Phys Med Rehabil. 2006;87:57–62.

    PubMed  Google Scholar 

  11. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta GA Cent. Dis. Control Prev. Natl. Cent. Inj. Prev. Control. 2010

  12. Kerr ZY, Harmon KJ, Marshall SW, Proescholdbell SK, Waller AE. The epidemiology of traumatic brain injuries treated in emergency departments in North Carolina, 2010-2011. N C Med J. 2014;75:8–14.

    PubMed  Google Scholar 

  13. Rutland-Brown W, Langlois JA, Thomas KE, Xi YL. Incidence of traumatic brain injury in the United States, 2003. J Head Trauma Rehabil. 2006;21:544–8.

    PubMed  Google Scholar 

  14. Crutcher CL, Ugiliweneza B, Hodes JE, Kong M, Boakye M. Alcohol intoxication and its effects on traumatic spinal cord injury outcomes. J Neurotrauma. 2014;31:798–802.

    PubMed  Google Scholar 

  15. Puljula J, Mäkinen E, Cygnel H, Kortelainen M-L, Hillbom M. Incidence of moderate-to-severe traumatic brain injuries after reduction in alcohol prices. Acta Neurol Scand. 2013;127:192–7.

    CAS  PubMed  Google Scholar 

  16. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24:254–64.

    CAS  PubMed  Google Scholar 

  17. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99:4–9.

    CAS  PubMed  Google Scholar 

  18. Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol. 2008;209:378–88.

    CAS  PubMed  Google Scholar 

  19. •• Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis. 2004;15:415–36. Review article that compares the inflammatory response after traumatic brain and spinal cord injuries.

    PubMed  Google Scholar 

  20. Witcher KG, Eiferman DS, Godbout JP. Priming the inflammatory pump of the CNS after traumatic brain injury. Trends Neurosci. 2015;38:609–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang B, Gensel JC. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord. Exp Neurol. 2014;258:112–20.

    CAS  PubMed  Google Scholar 

  22. Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, et al. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci. 2014;34:10989–1006.

    PubMed  PubMed Central  Google Scholar 

  23. Santarsieri M, Niyonkuru C, McCullough EH, Dobos JA, Dixon CE, Berga SL, et al. Cerebrospinal fluid cortisol and progesterone profiles and outcomes prognostication after severe traumatic brain injury. J Neurotrauma. 2014;31:699–712.

    PubMed  PubMed Central  Google Scholar 

  24. Santarsieri M, Kumar RG, Kochanek PM, Berga S, Wagner AK. Variable neuroendocrine-immune dysfunction in individuals with unfavorable outcome after severe traumatic brain injury. Brain Behav Immun. 2015;45:15–27.

    CAS  PubMed  Google Scholar 

  25. Kumar RG, Boles JA, Wagner AK. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil. 2015;30(6):369–81.

    PubMed  Google Scholar 

  26. Kumar RG, Diamond ML, Boles JA, Berger RP, Tisherman SA, Kochanek PM, et al. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun. 2015;45:253–62.

    CAS  PubMed  Google Scholar 

  27. Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, et al. IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia. 2015;56:991–1001.

    CAS  PubMed  Google Scholar 

  28. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.

    CAS  PubMed  Google Scholar 

  30. Juengst SB, Kumar RG, Failla MD, Goyal A, Wagner AK. Acute inflammatory biomarker profiles predict depression risk following moderate to severe traumatic brain injury. J Head Trauma Rehabil. 2015;30:207–18.

    PubMed  Google Scholar 

  31. Maldonado-Bouchard S, Peters K, Woller SA, Madahian B, Faghihi U, Patel S, et al. Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain Behav Immunol. 2016;51:176–95.

    Google Scholar 

  32. Baguley IJ. The excitatory:inhibitory ratio model (EIR model): an integrative explanation of acute autonomic overactivity syndromes. Med Hypotheses. 2008;70:26–35.

    PubMed  Google Scholar 

  33. Furlan JC. Autonomic dysreflexia: a clinical emergency. J Trauma Acute Care Surg. 2013;75:496–500.

    PubMed  Google Scholar 

  34. Krassioukov AV, Furlan JC, Fehlings MG. Autonomic dysreflexia in acute spinal cord injury: an under-recognized clinical entity. J Neurotrauma. 2003;20:707–16.

    PubMed  Google Scholar 

  35. Krassioukov A, Warburton DE, Teasell R, Eng JJ, Spinal Cord Injury Rehabilitation Evidence Research Team. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009;90:682–95.

    PubMed  PubMed Central  Google Scholar 

  36. Lindan R, Joiner E, Freehafer AA, Hazel C. Incidence and clinical features of autonomic dysreflexia in patients with spinal cord injury. Paraplegia. 1980;18:285–92.

    CAS  PubMed  Google Scholar 

  37. Consortium for Spinal Cord. Acute management of autonomic dysreflexia: adults with spinal cord injury presenting to health-care facilities.

  38. Wan D, Krassioukov AV. Life-threatening outcomes associated with autonomic dysreflexia: a clinical review. J Spinal Cord Med. 2014;37:2–10.

    PubMed  PubMed Central  Google Scholar 

  39. Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus. 2008;25:E13.

    PubMed  Google Scholar 

  40. Baguley IJ, Perkes IE, Fernandez-Ortega J-F, Rabinstein AA, Dolce G, Hendricks HT, et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria. J Neurotrauma. 2014;31:1515–20.

    PubMed  Google Scholar 

  41. Fernandez-Ortega JF, Prieto-Palomino MA, Garcia-Caballero M, Galeas-Lopez JL, Quesada-Garcia G, Baguley IJ. Paroxysmal sympathetic hyperactivity after traumatic brain injury: clinical and prognostic implications. J Neurotrauma. 2011;29:1364–70.

    Google Scholar 

  42. Rabinstein AA. Paroxysmal sympathetic hyperactivity in the neurological intensive care unit. Neurol Res. 2007;29:680–2.

    PubMed  Google Scholar 

  43. Laxe S, Terré R, León D, Bernabeu M. How does dysautonomia influence the outcome of traumatic brain injured patients admitted in a neurorehabilitation unit? Brain Inj. 2013;27:1383–7.

    PubMed  Google Scholar 

  44. Lv L-Q, Hou L-J, Yu M-K, Qi X-Q, Chen H-R, Chen J-X, et al. Prognostic influence and magnetic resonance imaging findings in paroxysmal sympathetic hyperactivity after severe traumatic brain injury. J Neurotrauma. 2010;27:1945–50.

    PubMed  Google Scholar 

  45. Baguley IJ, Cameron ID, Green AM, Slewa-Younan S, Marosszeky JE, Gurka JA. Pharmacological management of dysautonomia following traumatic brain injury. Brain Inj. 2004;18:409–17.

    PubMed  Google Scholar 

  46. •• Choi HA, Jeon S-B, Samuel S, Allison T, Lee K. Paroxysmal sympathetic hyperactivity after acute brain injury. Curr Neurol Neurosci Rep. 2013;13:370. Review article on the pathophysiology and treatment for PSH.

  47. Feng Y, Zheng X, Fang Z. Treatment progress of paroxysmal sympathetic hyperactivity after acquired brain injury. Pediatr Neurosurg. 2015;50(6):301–9.

    PubMed  Google Scholar 

  48. Goldstein LB. Neuropharmacology of TBI-induced plasticity. Brain Inj. 2003;17:685–94.

    PubMed  Google Scholar 

  49. Balboni TA, Gobezie R, Mamon HJ. Heterotopic ossification: pathophysiology, clinical features, and the role of radiotherapy for prophylaxis. Int J Radiat Oncol Biol Phys. 2006;65:1289–99.

    PubMed  Google Scholar 

  50. Dizdar D, Tiftik T, Kara M, Tunç H, Ersöz M, Akkuş S. Risk factors for developing heterotopic ossification in patients with traumatic brain injury. Brain Inj. 2013;27:807–11.

    PubMed  Google Scholar 

  51. Reznik JE, Biros E, Marshall R, Jelbart M, Milanese S, Gordon S, et al. Prevalence and risk-factors of neurogenic heterotopic ossification in traumatic spinal cord and traumatic brain injured patients admitted to specialised units in Australia. J Musculoskelet Neuronal Interact. 2014;14:19–28.

    CAS  PubMed  Google Scholar 

  52. Simonsen LL, Sonne-Holm S, Krasheninnikoff M, Engberg AW. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors. Injury. 2007;38:1146–50.

    PubMed  Google Scholar 

  53. Sullivan MP, Torres SJ, Mehta S, Ahn J. Heterotopic ossification after central nervous system trauma: a current review. Bone Joint Res. 2013;2:51–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wittenberg RH, Peschke U, Bötel U. Heterotopic ossification after spinal cord injury. Epidemiology and risk factors. J Bone Joint Surg Br. 1992;74:215–8.

    CAS  PubMed  Google Scholar 

  55. Ranganathan K, Loder S, Agarwal S, Wong VC, Forsberg J, Davis TA, et al. Heterotopic ossification: basic-science principles and clinical correlates. J Bone Joint Surg Am. 2015;97:1101–11.

    PubMed  Google Scholar 

  56. van Kuijk AA, Geurts ACH, van Kuppevelt HJM. Neurogenic heterotopic ossification in spinal cord injury. Spinal Cord. 2002;40:313–26.

    PubMed  Google Scholar 

  57. Elbasiouny SM, Moroz D, Bakr MM, Mushahwar VK. Management of spasticity after spinal cord injury: current techniques and future directions. Neurorehabil Neural Repair. 2010;24:23–33.

    PubMed  Google Scholar 

  58. •• Lapeyre E, Kuks JBM, Meijler WJ. Spasticity: revisiting the role and the individual value of several pharmacological treatments. NeuroRehabilitation. 2010;27:193–200. Review article comparing pharmacologic treatments for spasticity.

  59. Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord. 2005;43:577–86.

    CAS  PubMed  Google Scholar 

  60. Kita M, Goodkin DE. Drugs used to treat spasticity. Drugs. 2000;59:487–95.

    CAS  PubMed  Google Scholar 

  61. Zafonte R, Elovic EP, Lombard L. Acute care management of post-TBI spasticity. J Head Trauma Rehabil. 2004;19:89–100.

    PubMed  Google Scholar 

  62. Kim JY, Chun S, Bang MS, Shin H-I, Lee S-U. Safety of low-dose oral dantrolene sodium on hepatic function. Arch Phys Med Rehabil. 2011;92:1359–63.

    PubMed  Google Scholar 

  63. Utili R, Boitnott JK, Zimmerman HJ. Dantrolene-associated hepatic injury. Incidence and character. Gastroenterology. 1977;72:610–6.

    CAS  PubMed  Google Scholar 

  64. Aimaretti G, Ambrosio MR, Di Somma C, Fusco A, Cannavò S, Gasperi M, et al. Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: screening study at 3 months after the brain injury. Clin Endocrinol (Oxf). 2004;61:320–6.

    CAS  PubMed  Google Scholar 

  65. Aimaretti G, Ambrosio MR, Di Somma C, Gasperi M, Cannavò S, Scaroni C, et al. Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab. 2005;90:6085–92.

    CAS  PubMed  Google Scholar 

  66. Barton DJ, Kumar RG, McCullough EH, Galang G, Arenth PM, Berga SL, et al. Persistent hypogonadotropic hypogonadism in men after severe traumatic brain injury: temporal hormone profiles and outcome prediction. J Head Trauma Rehabil. 2015

  67. Dusick JR, Wang C, Cohan P, Swerdloff R, Kelly DF. Pathophysiology of hypopituitarism in the setting of brain injury. Pituitary. 2012;15:2–9.

    PubMed  PubMed Central  Google Scholar 

  68. Leal-Cerro A, Flores JM, Rincon M, Murillo F, Pujol M, Garcia-Pesquera F, et al. Prevalence of hypopituitarism and growth hormone deficiency in adults long-term after severe traumatic brain injury. Clin Endocrinol (Oxf). 2005;62:525–32.

    CAS  Google Scholar 

  69. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, Stalla GK, Agha A. Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA. 2007;298:1429–38.

    CAS  PubMed  Google Scholar 

  70. Silva PPB, Bhatnagar S, Herman SD, Zafonte R, Klibanski A, Miller KK, et al. Predictors of hypopituitarism in patients with traumatic brain injury. J Neurotrauma. 2015;32(22):1789–95.

    PubMed  Google Scholar 

  71. Corneli G, Ghigo E, Aimaretti G. Managing patients with hypopituitarism after traumatic brain injury. Curr Opin Endocrinol Diabetes Obes. 2007;14:301–5.

    PubMed  Google Scholar 

  72. Wagner AK, Brett CA, McCullough EH, Niyonkuru C, Loucks TL, Dixon CE, et al. Persistent hypogonadism influences estradiol synthesis, cognition and outcome in males after severe TBI. Brain Inj. 2012;26:1226–42.

    PubMed  Google Scholar 

  73. Bondanelli M, Ambrosio MR, Zatelli MC, De Marinis L, degli Uberti EC. Hypopituitarism after traumatic brain injury. Eur J Endocrinol. 2005;152(5):679–91.

    CAS  PubMed  Google Scholar 

  74. Cohan P, Wang C, McArthur DL, Cook SW, Dusick JR, Armin B, et al. Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med. 2005;33:2358–66.

    CAS  PubMed  Google Scholar 

  75. Glynn N, Agha A. Which patient requires neuroendocrine assessment following traumatic brain injury, when and how? Clin Endocrinol (Oxf). 2013;78:17–20.

    Google Scholar 

  76. Barbonetti A, Vassallo MRC, Pacca F, Cavallo F, Costanzo M, Felzani G, et al. Correlates of low testosterone in men with chronic spinal cord injury. Andrology. 2014;2:721–8.

    CAS  PubMed  Google Scholar 

  77. • Bauman WA, La Fountaine MF, Spungen AM. Age-related prevalence of low testosterone in men with spinal cord injury. J Spinal Cord Med. 2014;37:32–9. Prospective cohort study that investigated functional outcomes and acute rehabilitation length of stay in patients with dual diagnosis compared with SCI alone

    PubMed  Google Scholar 

  78. • Celik B, Sahin A, Caglar N, Erhan B, Gunduz B, Gultekin O, et al. Sex hormone levels and functional outcomes: a controlled study of patients with spinal cord injury compared with healthy subjects. Am. J Phys Med Rehabil. 2007;86:784–90. Mouse model for dual diagnosis injury to investigate the impact of dual diagnosis on functional motor recovery.

    Google Scholar 

  79. Clark MJ, Schopp LH, Mazurek MO, Zaniletti I, Lammy AB, Martin TA, et al. Testosterone levels among men with spinal cord injury: relationship between time since injury and laboratory values. Am J Phys Med Rehabil. 2008;87:758–67.

    PubMed  Google Scholar 

  80. Durga A, Sepahpanah F, Regozzi M, Hastings J, Crane DA. Prevalence of testosterone deficiency after spinal cord injury. PM R. 2011;3:929–32.

    PubMed  Google Scholar 

  81. Safarinejad MR. Level of injury and hormone profiles in spinal cord-injured men. Urology. 2001;58:671–6.

    CAS  PubMed  Google Scholar 

  82. Schopp LH, Clark M, Mazurek MO, Hagglund KJ, Acuff ME, Sherman AK, et al. Testosterone levels among men with spinal cord injury admitted to inpatient rehabilitation. Am J Phys Med Rehabil. 2006;85:678–84 quiz 685–7.

    PubMed  Google Scholar 

  83. Kelly DM, Jones TH. Testosterone and obesity. Obes Rev. 2015;16:581–606.

    CAS  PubMed  Google Scholar 

  84. Clark MJ, Petroski GF, Mazurek MO, Hagglund KJ, Sherman AK, Lammy AB, et al. Testosterone replacement therapy and motor function in men with spinal cord injury: a retrospective analysis. Am J Phys Med Rehabil. 2008;87:281–4.

    PubMed  Google Scholar 

  85. Wei CW, Tharmakulasingam J, Crawley A, Kideckel DM, Mikulis DJ, Bradbury CL, et al. Use of diffusion-tensor imaging in traumatic spinal cord injury to identify concomitant traumatic brain injury. Arch Phys Med Rehabil. 2008;89:S85–91.

    PubMed  Google Scholar 

  86. Bradbury CL, Wodchis WP, Mikulis DJ, Pano EG, Hitzig SL, McGillivray CF, et al. Traumatic brain injury in patients with traumatic spinal cord injury: clinical and economic consequences. Arch Phys Med Rehabil. 2008;89:S77–84.

    PubMed  Google Scholar 

  87. Macciocchi SN, Seel RT, Thompson N. The impact of mild traumatic brain injury on cognitive functioning following co-occurring spinal cord injury. Arch Clin Neuropsychol. 2013;28:684–91.

    PubMed  PubMed Central  Google Scholar 

  88. Macciocchi S, Seel RT, Warshowsky A, Thompson N, Barlow K. Co-occurring traumatic brain injury and acute spinal cord injury rehabilitation outcomes. Arch Phys Med Rehabil. 2012;93:1788–94.

    PubMed  Google Scholar 

  89. Macciocchi SN, Bowman B, Coker J, Apple D, Leslie D. Effect of co-morbid traumatic brain injury on functional outcome of persons with spinal cord injuries. Am J Phys Med Rehabil. 2004;83:22–6.

    PubMed  Google Scholar 

  90. Inoue T, Lin A, Ma X, McKenna SL, Creasey GH, Manley GT, et al. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement. Exp Neurol. 2013;248:136–47.

    PubMed  PubMed Central  Google Scholar 

  91. Boyle CL, Nott MT, Baguley IJ, Ranka JL. Contextual influences on employment of people with dual diagnosis: spinal cord injury and traumatic brain injury. Aust Occup Ther J. 2014;61:335–43.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Galang.

Additional information

This article is part of the Topical Collection on Traumatic Brain Injury Rehabilitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, S.M., Galang, G. Concurrent SCI and TBI: Epidemiology, Shared Pathophysiology, Assessment, and Prognostication. Curr Phys Med Rehabil Rep 4, 71–79 (2016). https://doi.org/10.1007/s40141-016-0109-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-016-0109-6

Keywords

Navigation