Skip to main content
Log in

A Narrative Review of Pharmacologic and Non-pharmacologic Interventions for Disorders of Consciousness Following Brain Injury in the Pediatric Population

  • Traumatic Brain Injury Rehabilitation (A. K. Wagner, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is the most common cause of long-term disability in the United States. A significant proportion of children who experience a TBI will have moderate or severe injuries, which includes a period of decreased responsiveness. Both pharmacological and non-pharmacological modalities are used for treating disorders of consciousness after TBI in children. However, the evidence supporting the use of potential therapies is relatively scant, even in adults, and overall, there is a paucity of study in pediatrics. The goal of this review is to describe the state of the science for use of pharmacologic and non-pharmacologic interventions for disorders of consciousness in the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010. p. 2.

    Google Scholar 

  2. Graves JM, Rivara FP, Vavilala MS. Health care costs 1 year after pediatric traumatic brain injury. Am J Public Health. 2015;105(10):e35–41. doi:10.2105/AJPH.2015.302744.

    PubMed  PubMed Central  Google Scholar 

  3. Schneier AJ, Shields BJ, Hostetler SG, Xiang H, Smith GA. Incidence of pediatric traumatic brain injury and associated hospital resource utilization in the United States. Pediatrics. 2006;118(2):483–92. doi:10.1542/peds.2005-2588.

    PubMed  Google Scholar 

  4. Kraus JF, Rock A, Hemyari P. Brain injuries among infants, children, adolescents, and young adults. Am J Dis Child. 1990;144(6):684–91.

    CAS  PubMed  Google Scholar 

  5. McDonald CM, Jaffe KM, Fay GC, Polissar NL, Martin KM, Liao S, et al. Comparison of indices of traumatic brain injury severity as predictors of neurobehavioral outcome in children. Arch Phys Med Rehabil. 1994;75(3):328–37.

    CAS  PubMed  Google Scholar 

  6. Austin CA, Slomine BS, Dematt EJ, Salorio CF, Suskauer SJ. Time to follow commands remains the most useful injury severity variable for predicting WeeFIM(R) scores 1 year after paediatric TBI. Brain Inj. 2013;27(9):1056–62. doi:10.3109/02699052.2013.794964.

    PubMed  PubMed Central  Google Scholar 

  7. Pangilinan PH, Giacoletti-Argento A, Shellhaas R, Hurvitz EA, Hornyak JE. Neuropharmacology in pediatric brain injury: a review. PMR. 2010;2(12):1127–40. doi:10.1016/j.pmrj.2010.07.007.

    Google Scholar 

  8. Patrick PD, Wamstad JB, Mabry JL, Smith-Janik S, Gurka MJ, Buck ML, et al. Assessing the relationship between the WNSSP and therapeutic participation in adolescents in low response states following severe traumatic brain injury. Brain Inj. 2009;23(6):528–34. doi:10.1080/02699050902926325.

    PubMed  Google Scholar 

  9. Di Perri C, Stender J, Laureys S, Gosseries O. Functional neuroanatomy of disorders of consciousness. Epilepsy Behav. 2014;30:28–32. doi:10.1016/j.yebeh.2013.09.014.

    PubMed  Google Scholar 

  10. Laureys S, Owen AM, Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3(9):537–46. doi:10.1016/S1474-4422(04)00852-X.

    PubMed  Google Scholar 

  11. Blume C, Del Giudice R, Wislowska M, Lechinger J, Schabus M. Across the consciousness continuum-from unresponsive wakefulness to sleep. Front Hum Neurosci. 2015;9:105. doi:10.3389/fnhum.2015.00105.

    PubMed  PubMed Central  Google Scholar 

  12. Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. 2010;33(1):1–9. doi:10.1016/j.tins.2009.11.002.

    CAS  PubMed  Google Scholar 

  13. Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci USA. 2014;111(17):6473–8. doi:10.1073/pnas.1320969111.

    CAS  PubMed  Google Scholar 

  14. Giacino J, Whyte J. The vegetative and minimally conscious states: current knowledge and remaining questions. J Head Trauma Rehabil. 2005;20(1):30–50.

    PubMed  Google Scholar 

  15. • Cossu G. Therapeutic options to enhance coma arousal after traumatic brain injury: state of the art of current treatments to improve coma recovery. Br J Neurosurg. 2014;28(2):187–98. doi:10.3109/02688697.2013.841845. Review of both pharmacologic and non-pharmacologic interventions for coma recovery. This review focuses on studies in adults.

    PubMed  Google Scholar 

  16. •• Suskauer SJ, Trovato MK. Update on pharmaceutical intervention for disorders of consciousness and agitation after traumatic brain injury in children. PMR. 2013;5(2):142–7. doi:10.1016/j.pmrj.2012.08.021. Review of pharmacology in pediatrics for disorders of consciousness, as well as for agitation. This is the most recent overview of pediatric TBI pharmacology that we found.

    Google Scholar 

  17. • Giacino JT, Whyte J, Bagiella E, Kathleen K, Childs N, Khademi A et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med. 2012;366(9):819–26. doi:10.1056/NEJMoa1102609. This is the largest clinical trial of amantadine for treatment of TBI, in adults. As such, it represents probably the best evidence of any treatment for disorders of consciousness after TBI. This study was done in adult patients.

    CAS  PubMed  Google Scholar 

  18. Bales JW, Wagner AK, Kline AE, Dixon CE. Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev. 2009;33(7):981–1003. doi:10.1016/j.neubiorev.2009.03.011.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zasler ND, Katz DI, Zafonte RD, Arciniegas DB. Brain injury medicine: principles and practice. New York: Demos Medical Publishing; 2012.

    Google Scholar 

  20. Pistoia F, Sara M, Sacco S, Franceschini M, Carolei A. Silencing the brain may be better than stimulating it. The GABA effect. Curr Pharm Des. 2014;20(26):4154–66.

    CAS  PubMed  Google Scholar 

  21. Green LB, Hornyak JE, Hurvitz EA. Amantadine in pediatric patients with traumatic brain injury: a retrospective, case-controlled study. Am J Phys Med Rehabil. 2004;83(12):893–7.

    PubMed  Google Scholar 

  22. McMahon MA, Vargus-Adams JN, Michaud LJ, Judy B. Effects of amantadine in children with impaired consciousness caused by acquired brain injury: a pilot study. Am J Phys Med Rehabil. 2009;88(7):525. doi:10.1097/PHM.0b013e3181a5ade3.

    PubMed  Google Scholar 

  23. Vargus-Adams JN, McMahon MA, Michaud LJ, Bean J, Vinks AA. Pharmacokinetics of amantadine in children with impaired consciousness due to acquired brain injury: preliminary findings using a sparse-sampling technique. PMR. 2010;2(1):37–42. doi:10.1016/j.pmrj.2009.10.010.

    Google Scholar 

  24. Patrick PD, Buck ML, Conaway MR, Blackman JA. The use of dopamine enhancing medications with children in low response states following brain injury. Brain Inj. 2003;17(6):497–506. doi:10.1080/0269905031000070279.

    CAS  PubMed  Google Scholar 

  25. Patrick PD, Blackman JA, Mabry JL, Buck ML, Gurka MJ, Conaway MR. Dopamine agonist therapy in low-response children following traumatic brain injury. J Child Neurol. 2006;21(10):879–85.

    PubMed  Google Scholar 

  26. Hornyak JE, Nelson VS, Hurvitz EA. The use of methylphenidate in paediatric traumatic brain injury. Pediatr Rehabil. 1997;1(1):15–7.

    CAS  PubMed  Google Scholar 

  27. Snyman N, Egan JR, London K, Howman-Giles R, Gill D, Gillis J, et al. Zolpidem for persistent vegetative state—a placebo-controlled trial in pediatrics. Neuropediatrics. 2010;41(5):223–7. doi:10.1055/s-0030-1269893.

    CAS  PubMed  Google Scholar 

  28. • Whyte J, Rajan R, Rosenbaum A, Katz D, Kalmar K, Seel R et al. Zolpidem and restoration of consciousness. Am J Phys Med Rehabil. 2014;93(2):101–13. doi:10.1097/PHM.0000000000000069. The largest study on use of zolpidem for recovery of consciousness after TBI. This was an adult study, and showed about a 5% response rate.

    Google Scholar 

  29. Hotz GA, Castelblanco A, Lara IM, Weiss AD, Duncan R, Kuluz JW. Snoezelen: a controlled multi-sensory stimulation therapy for children recovering from severe brain injury. Brain Inj. 2006;20(8):879–88. doi:10.1080/02699050600832635.

    PubMed  Google Scholar 

  30. Mitchell S, Bradley VA, Welch JL, Britton PG. Coma arousal procedure: a therapeutic intervention in the treatment of head injury. Brain Inj. 1990;4(3):273–9.

    CAS  PubMed  Google Scholar 

  31. Pierce JP, Lyle DM, Quine S, Evans NJ, Morris J, Fearnside MR. The effectiveness of coma arousal intervention. Brain Inj. 1990;4(2):191–7.

    CAS  PubMed  Google Scholar 

  32. Noda R, Maeda Y, Yoshino A. Therapeutic time window for musicokinetic therapy in a persistent vegetative state after severe brain damage. Brain Inj. 2004;18(5):509–15. doi:10.1080/02699050310001645810.

    PubMed  Google Scholar 

  33. Wilson SL, Powell GE, Brock D, Thwaites H. Vegetative state and responses to sensory stimulation: an analysis of 24 cases. Brain Inj. 1996;10(11):807–18.

    CAS  PubMed  Google Scholar 

  34. Wood RL, Winkowski TB, Miller JL, Tierney L, Goldman L. Evaluating sensory regulation as a method to improve awareness in patients with altered states of consciousness: a pilot study. Brain Inj. 1992;6(5):411–8.

    CAS  PubMed  Google Scholar 

  35. Jones R, Hux K, Morton-Anderson KA, Knepper L. Auditory stimulation effect on a comatose survivor of traumatic brain injury. Arch Phys Med Rehabil. 1994;75(2):164–71.

    CAS  PubMed  Google Scholar 

  36. Schiff ND. Moving toward a generalizable application of central thalamic deep brain stimulation for support of forebrain arousal regulation in the severely injured brain. Ann N Y Acad Sci. 2012;1265:56–68. doi:10.1111/j.1749-6632.2012.06712.x.

    PubMed  Google Scholar 

  37. Libet H, Gerard RW. Steady potential fields and neurone activity. J Neurophysiol. 1941;4:438–55.

    Google Scholar 

  38. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5:436–52.

    CAS  PubMed  Google Scholar 

  39. Dieckmann G. Cortical synchronized and desynchronized responses evoked by stimulation of the putamen and pallidum in cats. J Neurol Sci. 1968;7(2):385–91.

    CAS  PubMed  Google Scholar 

  40. Hassler R, Ore GD, Dieckmann G, Bricolo A, Dolce G. Behavioural and EEG arousal induced by stimulation of unspecific projection systems in a patient with post-traumatic apallic syndrome. Electroencephalogr Clin Neurophysiol. 1969;27(3):306–10.

    CAS  PubMed  Google Scholar 

  41. Cooper EB, Cooper JB. Electrical treatment of coma via the median nerve. Acta Neurochir Suppl. 2003;87:7–10.

    CAS  PubMed  Google Scholar 

  42. Andino SLG, Herrera-Rincon C, Panetsos F, Peralta RGD. Combining BMI Stimulation and Mathematical Modeling for Acute Stroke Recovery and Neural Repair. Front Neurosci. 2011;. doi:10.3389/fnins.2011.00087.

  43. Cooper JB, Jane JA, Alves WM, Cooper EB. Right median nerve electrical stimulation to hasten awakening from coma. Brain Inj. 1999;13(4):261–7.

    CAS  PubMed  Google Scholar 

  44. Lei J, Wang L, Gao G, Cooper E, Jiang J. Right median nerve electrical stimulation for acute traumatic coma patients. J Neurotrauma. 2015;. doi:10.1089/neu.2014.3768.

    PubMed  Google Scholar 

  45. Kanno T, Kamei Y, Yokoyama T, Jain VK. Neurostimulation for patients in vegetative status. Pacing Clin Electrophysiol. 1987;10(1):207–8.

    CAS  PubMed  Google Scholar 

  46. Kanno T, Kamel Y, Yokoyama T, Shoda M, Tanji H, Nomura M. Effects of dorsal column spinal cord stimulation (DCS) on reversibility of neuronal function—experience of treatment for vegetative states. Pacing Clin Electrophysiol. 1989;12(4 Pt 2):733–8.

    CAS  PubMed  Google Scholar 

  47. Angelakis E, Liouta E, Andreadis N, Korfias S, Ktonas P, Stranjalis G, et al. Transcranial direct current stimulation effects in disorders of consciousness. Arch Phys Med Rehabil. 2014;95(2):283–9. doi:10.1016/j.apmr.2013.09.002.

    PubMed  Google Scholar 

  48. Pape TL, Rosenow J, Lewis G. Transcranial magnetic stimulation: a possible treatment for TBI. J Head Trauma Rehabil. 2006;21(5):437–51.

    PubMed  Google Scholar 

  49. Purpura DP, McMurtry JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–85.

    CAS  PubMed  Google Scholar 

  50. Pistoia F, Sacco S, Carolei A, Sara M. Corticomotor facilitation in vegetative state: results of a pilot study. Arch Phys Med Rehabil. 2013;94(8):1599–606. doi:10.1016/j.apmr.2013.01.019.

    PubMed  Google Scholar 

  51. Jankovic J. Treatment of dystonia. Lancet Neurol. 2006;5(10):864. doi:10.1016/s1474-4422(06)70574-9.

    CAS  PubMed  Google Scholar 

  52. Giacino J, Fins JJ, Machado A, Schiff ND. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation. 2012;15(4):339–49. doi:10.1111/j.1525-1403.2012.00458.x.

    PubMed  Google Scholar 

  53. Shah SA, Schiff ND. Central thalamic deep brain stimulation for cognitive neuromodulation—a review of proposed mechanisms and investigational studies. Eur J Neurosci. 2010;32(7):1135–44. doi:10.1111/j.1460-9568.2010.07420.x.

    PubMed  PubMed Central  Google Scholar 

  54. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K, Gerber M, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 2007;448(7153):600–3. doi:10.1038/nature06041.

    CAS  PubMed  Google Scholar 

  55. Deliac P, Richer E, Berthomieu J, Paty J, Cohadon F, Bensch C. Electrophysiological development under thalamic stimulation of post-traumatic persistent vegetative states. Apropos of 25 cases. Neurochirurgie. 1993;39(5):293–303.

    CAS  PubMed  Google Scholar 

  56. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5. doi:10.2217/17460751.3.1.1.

    PubMed  Google Scholar 

  57. Shinoyama M, Ideguchi M, Kida H, Kajiwara K, Kagawa Y, Maeda Y, et al. Cortical region-specific engraftment of embryonic stem cell-derived neural progenitor cells restores axonal sprouting to a subcortical target and achieves motor functional recovery in a mouse model of neonatal hypoxic-ischemic brain injury. Front Cell Neurosci. 2013;7:128. doi:10.3389/fncel.2013.00128.

    PubMed  PubMed Central  Google Scholar 

  58. Siniscalco D, Giordano C, Galderisi U, Livio L, Novellis VD, Rossi F, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci. 2011;. doi:10.3389/fnint.2011.00079.5:79.

  59. Walker PA, Shah SK, Harting MT, Cox CS Jr. Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis Model Mech. 2009;2(1–2):23. doi:10.1242/dmm.001198.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Seledtsov VI, Rabinovich SS, Parlyuk OV, Kafanova MY, Astrakov SV, Seledtsova GV, et al. Cell transplantation therapy in re-animating severely head-injured patients. Biomed Pharmacother. 2005;59(7):415–20. doi:10.1016/j.biopha.2005.01.012.

    PubMed  Google Scholar 

  61. Seledtsov VI, Rabinovich SS, Parlyuk OV, Poveshchenko OV, Astrakov SV, Samarin DM, et al. Cell therapy of comatose states. Bull Exp Biol Med. 2006;142(1):129–32.

    CAS  PubMed  Google Scholar 

  62. Rockswold SB, Rockswold GL, Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol Res. 2007;29(2):162–72. doi:10.1179/016164107X181798.

    PubMed  Google Scholar 

  63. Liu S, Shen G, Deng S, Wang X, Wu Q, Guo A. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regen Res. 2013;8(35):3334–43. doi:10.3969/j.issn.1673-5374.2013.35.008.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sahni T, Jain M, Prasad R, Sogani SK, Singh VP. Use of hyperbaric oxygen in traumatic brain injury: retrospective analysis of data of 20 patients treated at a tertiary care centre. Br J Neurosurg. 2012;26(2):202–7. doi:10.3109/02688697.2011.626879.

    PubMed  Google Scholar 

  65. Shi XY, Tang ZQ, Xiong B, Bao JX, Sun D, Zhang YQ, et al. Cerebral perfusion SPECT imaging for assessment of the effect of hyperbaric oxygen therapy on patients with postbrain injury neural status. Chin J Traumatol. 2003;6(6):346–9.

    PubMed  Google Scholar 

  66. Rockswold GL, Ford SE, Anderson DC, Bergman TA, Sherman RE. Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. J Neurosurg. 1992;76(6):929–34. doi:10.3171/jns.1992.76.6.0929.

    CAS  PubMed  Google Scholar 

  67. Rockswold SB, Rockswold GL, Zaun DA, Liu J. A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. J Neurosurg. 2013;118(6):1317–28. doi:10.3171/2013.2.JNS121468.

    CAS  PubMed  Google Scholar 

  68. Adelson PD, Fellows-Mayle W, Kochanek PM, Dixon CE. Morris water maze function and histologic characterization of two age-at-injury experimental models of controlled cortical impact in the immature rat. Childs Nerv Syst. 2013;29(1):43–53. doi:10.1007/s00381-012-1932-4.

    PubMed  Google Scholar 

  69. Fidan E, Lewis J, Kline AE, Garman RH, Alexander H, Cheng JP et al. Repetitive mild traumatic brain injury in the developing brain: effects on long-term functional outcome and neuropathology. J Neurotrauma. 2015. doi:10.1089/neu.2015.3958.

    PubMed  PubMed Central  Google Scholar 

  70. Shoykhet M, Simons DJ, Alexander H, Hosler C, Kochanek PM, Clark RS. Thalamocortical dysfunction and thalamic injury after asphyxial cardiac arrest in developing rats. J Neurosci. 2012;32(14):4972–81. doi:10.1523/JNEUROSCI.5597-11.2012.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding for this work was supported in part by the National Institute for Child Health and Human Development Grants HD074683 (BGK) and HD001097 (NKE). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or other supporting agencies. The authors have no financial relationships relevant to this article to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad G. Kurowski.

Additional information

This article is part of the Topical Collection on Traumatic Brain Injury Rehabilitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evanson, N.K., Paulson, A.L. & Kurowski, B.G. A Narrative Review of Pharmacologic and Non-pharmacologic Interventions for Disorders of Consciousness Following Brain Injury in the Pediatric Population. Curr Phys Med Rehabil Rep 4, 56–70 (2016). https://doi.org/10.1007/s40141-016-0108-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-016-0108-7

Keywords

Navigation