Skip to main content
Log in

Complications Following Left Ventricular Assist Device Implantation: Diagnosis and Management of Common Adverse Events

  • Critical Care Anesthesia (LL Liu, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Increasing use of left ventricular assist devices (LVADs) has led to improved survival in patients with chronic end-stage systolic heart failure. More than 2,000 devices are implanted each year in the United States. Newer generation continuous-flow LVADs have improved safety profiles over the previous pulsatile-flow devices. Post-implantation complications are still common, though, and lead to significant morbidity and mortality. Adverse events, such as right ventricular failure, bleeding, pump thrombosis, and cardiac arrest, require special consideration in the setting of an assist device. The intensivist should be familiar with the diagnosis and management of complications following LVAD placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. http://www.thoratec.com/medical-professionals/vad-product-information/thoratec-centrimag.aspx, accessed 12 June 2015

  2. http://www.abiomed.com/products/impella-rp/, accessed 12 June 2015

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yancy CW, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327.

    PubMed  Google Scholar 

  2. Colvin-Adams M, et al. OPTN/SRTR 2013 annual data report: heart. Am J Transpl. 2015;15(Suppl 2):1–28.

    Article  Google Scholar 

  3. Teuteberg JJ, et al. Implant strategies change over time and impact outcomes: insights from the INTERMACS (interagency registry for mechanically assisted circulatory support). JACC Heart Fail. 2013;1(5):369–78.

    Article  PubMed  Google Scholar 

  4. Miller LW, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96.

    Article  CAS  PubMed  Google Scholar 

  5. Slaughter MS, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  6. Aaronson KD, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125(25):3191–200.

    Article  PubMed  Google Scholar 

  7. •• Kirklin JK et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transpl. 2014;33(6):555–64. This most recent yearly report from INTERMACS highlights the data surrounding implantation, rates of adverse events, survival and other outcomes from the largest registry of patients with rates of adverse events, survival and other outcomes from the largest registry of patients with mechanical circulatory devices.

  8. Rogers JG, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55(17):1826–34.

    Article  PubMed  Google Scholar 

  9. Genovese EA, et al. Early adverse events as predictors of 1-year mortality during mechanical circulatory support. J Heart Lung Transpl. 2010;29(9):981–8.

    Article  Google Scholar 

  10. Genovese EA, et al. Incidence and patterns of adverse event onset during the first 60 days after ventricular assist device implantation. Ann Thorac Surg. 2009;88(4):1162–70.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morgan JA, et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transpl. 2013;32(4):398–403.

    Article  Google Scholar 

  12. Popov AF, et al. Clinical experience with HeartWare left ventricular assist device in patients with end-stage heart failure. Ann Thorac Surg. 2012;93(3):810–5.

    Article  PubMed  Google Scholar 

  13. Grant AD, et al. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8.

    Article  PubMed  Google Scholar 

  14. Slaughter MS, et al. HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transpl. 2013;32(7):675–83.

    Article  Google Scholar 

  15. Pagani FD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54(4):312–21.

    Article  PubMed  Google Scholar 

  16. Strueber M, et al. Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol. 2011;57(12):1375–82.

    Article  PubMed  Google Scholar 

  17. Matthews JC, et al. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kormos RL, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.

    Article  PubMed  Google Scholar 

  19. Maltais S, et al. Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices. J Thorac Cardiovasc Surg. 2012;143(6):1370–6.

    Article  PubMed  Google Scholar 

  20. Piacentino V III, et al. Utility of concomitant tricuspid valve procedures for patients undergoing implantation of a continuous-flow left ventricular device. J Thorac Cardiovasc Surg. 2012;144(5):1217–21.

    Article  PubMed  Google Scholar 

  21. Antoniou T, et al. Inhaled nitric oxide plus iloprost in the setting of post-left assist device right heart dysfunction. Ann Thorac Surg. 2012;94(3):792–8.

    Article  PubMed  Google Scholar 

  22. Groves DS, et al. Effects of early inhaled epoprostenol therapy on pulmonary artery pressure and blood loss during LVAD placement. J Cardiothorac Vasc Anesth. 2014;28(3):652–60.

    Article  CAS  PubMed  Google Scholar 

  23. Haglund NA et al. Inhaled milrinone after left ventricular assist device implantation. J Card Fail. 2015.

  24. Khani-Hanjani A, et al. Case series using the ROTAFLOW system as a temporary right ventricular assist device after HeartMate II implantation. Asaio J. 2013;59(4):456–60.

    Article  PubMed  Google Scholar 

  25. Krabatsch T, et al. Biventricular circulatory support with two miniaturized implantable assist devices. Circulation. 2011;124(11 Suppl):S179–86.

    Article  PubMed  Google Scholar 

  26. Cleveland JC Jr, et al. Survival after biventricular assist device implantation: an analysis of the interagency registry for mechanically assisted circulatory support database. J Heart Lung Transpl. 2011;30(8):862–9.

    Google Scholar 

  27. Baghai M et al. Platelet dysfunction and acquired von Willebrand syndrome in patients with left ventricular assist devices. Eur J Cardiothorac Surg. 2014.

  28. John R, et al. Activation of endothelial and coagulation systems in left ventricular assist device recipients. Ann Thorac Surg. 2009;88(4):1171–9.

    Article  PubMed  Google Scholar 

  29. Goda M, et al. Time course of acquired von Willebrand disease associated with two types of continuous-flow left ventricular assist devices: HeartMate II and CircuLite Synergy Pocket Micro-pump. J Heart Lung Transpl. 2013;32(5):539–45.

    Article  Google Scholar 

  30. Davis ME, et al. Immediate recovery of acquired von Willebrand syndrome after left ventricular assist device explantation: implications for heart transplantation. Asaio J. 2015;61(1):e1–4.

    Article  PubMed  Google Scholar 

  31. Bunte MC, et al. Major bleeding during HeartMate II support. J Am Coll Cardiol. 2013;62(23):2188–96.

    Article  PubMed  Google Scholar 

  32. Wever-Pinzon O, et al. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device HeartMate II. Circ Heart Fail. 2013;6(3):517–26.

    Article  CAS  PubMed  Google Scholar 

  33. Lopilato AC, Doligalski CT, Caldeira C. Incidence and risk factor analysis for gastrointestinal bleeding and pump thrombosis in left ventricular assist device recipients. Artif Organs. 2015.

  34. Aggarwal A, et al. Incidence and management of gastrointestinal bleeding with continuous flow assist devices. Ann Thorac Surg. 2012;93(5):1534–40.

    Article  PubMed  Google Scholar 

  35. Goldstein DJ, et al. Gastrointestinal bleeding in recipients of the HeartWare ventricular assist system. JACC Heart Fail. 2015;3(4):303–13.

    Article  PubMed  Google Scholar 

  36. Demirozu ZT, et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transpl. 2011;30(8):849–53.

    Google Scholar 

  37. •• Feldman D et al. The 2013 International society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transpl. 2013;32(2):157–87. This is a comprehensive set of guidelines on the management of patients with mechanical circulatory support. It includes, among many other things, recommendations on the management of anticoagulation and antiplatelet agents, gastrointesinal bleeding, right ventricular dysfunction, and neurologic deficits.

  38. Morgan JA, et al. Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J Heart Lung Transpl. 2012;31(7):715–8.

    Article  Google Scholar 

  39. Holman WL et al. Durability of left ventricular assist devices: interagency registry for mechanically assisted circulatory support (INTERMACS) 2006 to 2011. J Thorac Cardiovasc Surg. 2013;146(2):437-41.e1.

  40. Kirklin JK, et al. Interagency registry for mechanically assisted circulatory support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transpl. 2014;33(1):12–22.

    Article  Google Scholar 

  41. • Starling RC et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40. From 2004 to 2013, incidence of device thrombus in the HeartMateII® LVAD has increased significantly, and the median time from implantation to thrombosis has decreased, with considerable morbidity and mortality in these patients. The etiology of these changes are unknown, but this article highlights a disturbing trend that should be investigated further.

  42. Najjar SS, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transpl. 2014;33(1):23–34.

    Article  Google Scholar 

  43. Stulak JM, et al. Gastrointestinal bleeding and subsequent risk of thromboembolic events during support with a left ventricular assist device. J Heart Lung Transpl. 2014;33(1):60–4.

    Article  Google Scholar 

  44. Shah P, et al. Diagnosis of hemolysis and device thrombosis with lactate dehydrogenase during left ventricular assist device support. J Heart Lung Transpl. 2014;33(1):102–4.

    Article  Google Scholar 

  45. Uriel N, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60(18):1764–75.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schlendorf K, et al. Thrombolytic therapy for thrombosis of continuous flow ventricular assist devices. J Card Fail. 2014;20(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  47. Raffa GM, et al. Should device replacement be the first choice strategy in continuous-flow left ventricle assist device thrombosis? Analysis of 9 events and results after endoventricular thrombolysis. Int J Cardiol. 2015;178:159–61.

    Article  PubMed  Google Scholar 

  48. Morgan JA, et al. Stroke while on long-term left ventricular assist device support: incidence, outcome, and predictors. Asaio J. 2014;60(3):284–9.

    Article  PubMed  Google Scholar 

  49. Lalonde SD, et al. Clinical differences between continuous flow ventricular assist devices: a comparison between HeartMate II and HeartWare HVAD. J Card Surg. 2013;28(5):604–10.

    Article  PubMed  Google Scholar 

  50. Trachtenberg BH, et al. Persistent blood stream infection in patients supported with a continuous-flow left ventricular assist device is associated with an increased risk of cerebrovascular accidents. J Card Fail. 2015;21(2):119–25.

    Article  PubMed  Google Scholar 

  51. Boyle AJ, et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transpl. 2011;30(4):402–7.

    Article  Google Scholar 

  52. Brisco MA, et al. Incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices. J Card Surg. 2014;29(4):572–80.

    Article  PubMed  Google Scholar 

  53. Refaat M, et al. Ventricular arrhythmias after left ventricular assist device implantation. Pacing Clin Electrophysiol. 2008;31(10):1246–52.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Raasch H, et al. Epidemiology, management, and outcomes of sustained ventricular arrhythmias after continuous-flow left ventricular assist device implantation. Am Heart J. 2012;164(3):373–8.

    Article  PubMed  Google Scholar 

  55. Cantillon DJ, et al. Improved survival among ventricular assist device recipients with a concomitant implantable cardioverter-defibrillator. Heart Rhythm. 2010;7(4):466–71.

    Article  PubMed  Google Scholar 

  56. Refaat MM, et al. Survival benefit of implantable cardioverter-defibrillators in left ventricular assist device-supported heart failure patients. J Card Fail. 2012;18(2):140–5.

    Article  PubMed  Google Scholar 

  57. Garan AR, et al. Ventricular arrhythmias and implantable cardioverter-defibrillator therapy in patients with continuous-flow left ventricular assist devices: need for primary prevention? J Am Coll Cardiol. 2013;61(25):2542–50.

    Article  PubMed  Google Scholar 

  58. Garan AR, et al. Catheter ablation for ventricular tachyarrhythmias in patients supported by continuous-flow left ventricular assist devices. Asaio J. 2014;60(3):311–6.

    Article  PubMed  Google Scholar 

  59. Hannan MM, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transpl. 2011;30(4):375–84.

    Article  Google Scholar 

  60. Sharma V, et al. Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg. 2012;94(5):1381–6.

    Article  PubMed  Google Scholar 

  61. John R, et al. Drive-line infections and sepsis in patients receiving the HVAD system as a left ventricular assist device. J Heart Lung Transpl. 2014;33(10):1066–73.

    Article  Google Scholar 

  62. Topkara VK, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90(4):1270–7.

    Article  PubMed  Google Scholar 

  63. Garg S, et al. In-hospital cardiopulmonary arrests in patients with left ventricular assist devices. J Card Fail. 2014;20(12):899–904.

    Article  PubMed  Google Scholar 

  64. Shinar Z, et al. Chest compressions may be safe in arresting patients with left ventricular assist devices (LVADs). Resuscitation. 2014;85(5):702–4.

    Article  PubMed  Google Scholar 

  65. Haglund NA, et al. Is a palpable pulse always restored during cardiopulmonary resuscitation in a patient with a left ventricular assist device? Am J Med Sci. 2014;347(4):322–7.

    Article  PubMed  Google Scholar 

  66. Rottenberg EM, et al. Abdominal only CPR during cardiac arrest for a patient with an LVAD during resternotomy: a case report. J Cardiothorac Surg. 2011;6:91.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Giridharan GA, et al. Hemodynamic changes and retrograde flow in LVAD failure. Asaio J. 2015;61(3):282–91.

    Article  PubMed  Google Scholar 

  68. Hasin T, et al. Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol. 2013;61(2):153–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Miko Enomoto.

Additional information

This article is part of the Topical Collection on Critical Care Anesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, E.A., Miko Enomoto, T. Complications Following Left Ventricular Assist Device Implantation: Diagnosis and Management of Common Adverse Events. Curr Anesthesiol Rep 5, 361–369 (2015). https://doi.org/10.1007/s40140-015-0127-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-015-0127-4

Keywords

Navigation