Skip to main content

Advertisement

Log in

Involvement of Tight Junction Plaque Proteins in Cancer

  • Leaky Junctions in Cancer (Chris Capaldo, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Here we review the molecular organization and protein–protein interactions of the following plaque proteins of tight junction (TJ): MAGI-1, -2 and -3, the polarity complex Par3/Par6/aPKC, afadin, MUPP1, PATJ, Pals1, cingulin, paracingulin, and JEAP. We analyze the status of these proteins in cancer tissue and their association to tumor suppressor proteins, kinases, and viral oncoproteins. Zonula occludens plaque proteins of the TJ are discussed separately in the preceding review within this issue.

Recent Findings

The expression of the above-mentioned TJ plaque proteins is frequently altered in cancer. However, while the loss of some of these proteins correlates with cancer development and low sensitivity to apoptosis, the overexpression of others is associated with poor patient survival rates. Some of these proteins are associated with tumor suppressor proteins like PTEN or to kinases activated in cancer like Src, while others are the target of oncoviral proteins or interact with signaling pathways involved in cell proliferation and transformation.

Summary

TJ present at the apical junctional complex of epithelial cells control the passage of ions and molecules through the paracellular route and block the movement of proteins and lipids within the plasma membrane from the apical to the basolateral surfaces. TJ are constituted by integral proteins linked to a vast group of plaque proteins, which form a scaffold associated with the actomyosin cytoskeleton. In cancerous tissues some of these plaque proteins are silenced while others are overexpressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81(1):1–44

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez-Mariscal L, Quiros, M, Diaz-Coranguez M, Bautista, P (2012)Tight junctions. In: S. N, (ed) Current frontiers and perspectives in cell biology: InTech

  3. Cordenonsi M, D’Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D et al (1999) Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol 147(7):1569–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Citi S, D’Atri F, Parry DA (2000) Human and Xenopus cingulin share a modular organization of the coiled-coil rod domain: predictions for intra- and intermolecular assembly. J Struct Biol 131(2):135–145. doi:10.1006/jsbi.2000.4284

    Article  CAS  PubMed  Google Scholar 

  5. Ye F, Zhang M (2013) Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem J 455(1):1–14. doi:10.1042/BJ20130783

    Article  CAS  PubMed  Google Scholar 

  6. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH et al (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275(5296):73–77

    Article  CAS  PubMed  Google Scholar 

  7. Macias MJ, Wiesner S, Sudol M (2002) WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513(1):30–37

    Article  CAS  PubMed  Google Scholar 

  8. Laura RP, Ross S, Koeppen H, Lasky LA (2002) MAGI-1: a widely expressed, alternatively spliced tight junction protein. Exp Cell Res 275(2):155–170. doi:10.1006/excr.2002.5475

    Article  CAS  PubMed  Google Scholar 

  9. Ide N, Hata Y, Nishioka H, Hirao K, Yao I, Deguchi M et al (1999) Localization of membrane-associated guanylate kinase (MAGI)-1/BAI-associated protein (BAP) 1 at tight junctions of epithelial cells. Oncogene 18(54):7810–7815. doi:10.1038/sj.onc.1203153

    Article  CAS  PubMed  Google Scholar 

  10. Dobrosotskaya IY, James GL (2000) MAGI-1 interacts with beta-catenin and is associated with cell-cell adhesion structures. Biochem Biophys Res Commun 270(3):903–909. doi:10.1006/bbrc.2000.2471

    Article  CAS  PubMed  Google Scholar 

  11. Xu Z, Peng AW, Oshima K, Heller S (2008) MAGI-1, a candidate stereociliary scaffolding protein, associates with the tip-link component cadherin 23. J Neurosci 28(44):11269–11276. doi:10.1523/JNEUROSCI.3833-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schnabel E, Anderson JM, Farquhar MG (1990) The tight junction protein ZO-1 is concentrated along slit diaphragms of the glomerular epithelium. J Cell Biol 111(3):1255–1263

    Article  CAS  PubMed  Google Scholar 

  13. Hirabayashi S, Mori H, Kansaku A, Kurihara H, Sakai T, Shimizu F et al (2005) MAGI-1 is a component of the glomerular slit diaphragm that is tightly associated with nephrin. Lab invest 85(12):1528–1543. doi:10.1038/labinvest.3700347

    CAS  PubMed  Google Scholar 

  14. Hirabayashi S, Tajima M, Yao I, Nishimura W, Mori H, Hata Y (2003) JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol 23(12):4267–4282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tajima M, Hirabayashi S, Yao I, Shirasawa M, Osuga J, Ishibashi S et al (2003) Roles of immunoglobulin-like loops of junctional cell adhesion molecule 4; involvement in the subcellular localization and the cell adhesion. Genes cells 8(9):759–768

    Article  CAS  PubMed  Google Scholar 

  16. Patrie KM (2005) Identification and characterization of a novel tight junction-associated family of proteins that interacts with a WW domain of MAGI-1. Biochim Biophys Acta 1745(1):131–144. doi:10.1016/j.bbamcr.2005.05.011

    Article  CAS  PubMed  Google Scholar 

  17. Patrie KM, Drescher AJ, Goyal M, Wiggins RC, Margolis B (2001) The membrane-associated guanylate kinase protein MAGI-1 binds megalin and is present in glomerular podocytes. J Am Soc Nephrol 12(4):667–677

    CAS  PubMed  Google Scholar 

  18. Patrie KM, Drescher AJ, Welihinda A, Mundel P, Margolis B (2002) Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1. J Biol Chem 277(33):30183–30190. doi:10.1074/jbc.M203072200

    Article  CAS  PubMed  Google Scholar 

  19. Kaufman L, Potla U, Coleman S, Dikiy S, Hata Y, Kurihara H et al (2010) Up-regulation of the homophilic adhesion molecule sidekick-1 in podocytes contributes to glomerulosclerosis. J Biol Chem 285(33):25677–25685. doi:10.1074/jbc.M110.133959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kotelevets L, van Hengel J, Bruyneel E, Mareel M, van Roy F, Chastre E (2005) Implication of the MAGI-1b/PTEN signalosome in stabilization of adherens junctions and suppression of invasiveness. FASEB J 19(1):115–117. doi:10.1096/fj.04-1942fje

    CAS  PubMed  Google Scholar 

  21. Zhang G, Wang Z (2011) MAGI1 inhibits cancer cell migration and invasion of hepatocellular carcinoma via regulating PTEN. Zhong Nan Da Xue Xue Bao Yi Xue 36(5):381–385. doi:10.3969/j.issn.1672-7347.2011.05.002

    CAS  Google Scholar 

  22. Zaric J, Joseph JM, Tercier S, Sengstag T, Ponsonnet L, Delorenzi M et al (2012) Identification of MAGI1 as a tumor-suppressor protein induced by cyclooxygenase-2 inhibitors in colorectal cancer cells. Oncogene 31(1):48–59. doi:10.1038/onc.2011.218

    Article  CAS  PubMed  Google Scholar 

  23. Zekri AR, Hafez MM, Bahnassy AA, Hassan ZK, Mansour T, Kamal MM et al (2008) Genetic profile of Egyptian hepatocellular-carcinoma associated with hepatitis C virus Genotype 4 by 15 K cDNA microarray: preliminary study. BMC Res Notes 1:106. doi:10.1186/1756-0500-1-106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. • Zhang G, Liu T, Wang Z (2012) Downregulation of MAGI1 associates with poor prognosis of hepatocellular carcinoma. J invest surg 25(2):93–99 doi:10.3109/08941939.2011.606875. This work reveals that the expression of MAGI-1 decreases in hepatocellular carcinoma and correlates with poor patient prognosis

  25. Rehfeld A, Plass M, Dossing K, Knigge U, Kjaer A, Krogh A et al (2014) Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors. Front endocrinol 5:46. doi:10.3389/fendo.2014.00046

    Article  Google Scholar 

  26. Nourashrafeddin S, Aarabi M, Modarressi MH, Rahmati M, Nouri M (2015) The evaluation of WBP2NL-related genes expression in breast cancer. Pathol oncol Res 21(2):293–300. doi:10.1007/s12253-014-9820-8

    Article  CAS  PubMed  Google Scholar 

  27. Makokha GN, Takahashi M, Higuchi M, Saito S, Tanaka Y, Fujii M (2013) Human T-cell leukemia virus type 1 tax protein interacts with and mislocalizes the PDZ domain protein MAGI-1. Cancer Sci 104(3):313–320. doi:10.1111/cas.12087

    Article  CAS  PubMed  Google Scholar 

  28. Thomas M, Kranjec C, Nagasaka K, Matlashewski G, Banks L (2011) Analysis of the PDZ binding specificities of Influenza A virus NS1 proteins. Virol J 8:25. doi:10.1186/1743-422X-8-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu H, Golebiewski L, Dow EC, Krug RM, Javier RT, Rice AP (2010) The ESEV PDZ-binding motif of the avian influenza a virus NS1 protein protects infected cells from apoptosis by directly targeting scribble. J Virol 84(21):11164–11174. doi:10.1128/JVI.01278-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19(46):5270–5280. doi:10.1038/sj.onc.1203906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grm HS, Banks L (2004) Degradation of hDlg and MAGIs by human papillomavirus E6 is E6-AP-independent. J Gen Virol 85(Pt 10):2815–2819. doi:10.1099/vir.0.80035-0

    Article  PubMed  CAS  Google Scholar 

  32. Fournane S, Charbonnier S, Chapelle A, Kieffer B, Orfanoudakis G, Trave G et al (2011) Surface plasmon resonance analysis of the binding of high-risk mucosal HPV E6 oncoproteins to the PDZ1 domain of the tight junction protein MAGI-1. J Mol Recognit 24(4):511–523. doi:10.1002/jmr.1056

    Article  CAS  PubMed  Google Scholar 

  33. Zanier K, Charbonnier S, Baltzinger M, Nomine Y, Altschuh D, Trave G (2005) Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance. J Mol Biol 349(2):401–412. doi:10.1016/j.jmb.2005.03.071

    Article  CAS  PubMed  Google Scholar 

  34. Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L et al (2002) Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21(33):5088–5096. doi:10.1038/sj.onc.1205668

    Article  CAS  PubMed  Google Scholar 

  35. •• 35. Kranjec C, Massimi P, Banks L (2014) Restoration of MAGI-1 expression in human papillomavirus-positive tumor cells induces cell growth arrest and apoptosis. J Virol 88(13):7155-69. doi:10.1128/JVI.03247-13. Through the generation of a MAGI-1 with a point mutation within the PDZ1 domain, the authors obtain a mutant resistant to HPV E6 targeting, whose overepression provides a means to overcome the deleterious effects generated by the oncoprotein

  36. Hirao K, Hata Y, Ide N, Takeuchi M, Irie M, Yao I et al (1998) A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem 273(33):21105–21110

    Article  CAS  PubMed  Google Scholar 

  37. Ihara K, Nishimura T, Fukuda T, Ookura T, Nishimori K (2012) Generation of Venus reporter knock-in mice revealed MAGI-2 expression patterns in adult mice. Gene Expr Patterns 12(3–4):95–101. doi:10.1016/j.gep.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  38. Lehtonen S, Ryan JJ, Kudlicka K, Iino N, Zhou H, Farquhar MG (2005) Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein complex. Proc Natl Acad Sci USA 102(28):9814–9819. doi:10.1073/pnas.0504166102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lefebvre J, Clarkson M, Massa F, Bradford ST, Charlet A, Buske F et al (2015) Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney Int 88(2):321–331. doi:10.1038/ki.2015.140

    Article  CAS  PubMed  Google Scholar 

  40. •• Balbas MD, Burgess MR, Murali R, Wongvipat J, Skaggs BJ, Mundel P et al. (2014) MAGI-2 scaffold protein is critical for kidney barrier function. Proceedings of the National Academy of Sciences of the United States of America 111(41):14876–1481. doi:10.1073/pnas.1417297111. The authors generate MAGI-2-null mice that suffer proteinuria, loss of nephrin expression in the glomeruli, podocyte foot process effacement, and renal failure. These results reveal that MAGI-2 is critical for the podocyte, where it concentrates at the slit diaphragms

  41. Ihara K, Asanuma K, Fukuda T, Ohwada S, Yoshida M, Nishimori K (2014) MAGI-2 is critical for the formation and maintenance of the glomerular filtration barrier in mouse kidney. Am J Pathol 184(10):2699–2708. doi:10.1016/j.ajpath.2014.06.019

    Article  CAS  PubMed  Google Scholar 

  42. McGovern DP, Taylor KD, Landers C, Derkowski C, Dutridge D, Dubinsky M et al (2009) MAGI2 genetic variation and inflammatory bowel disease. Inflamm Bowel Dis 15(1):75–83. doi:10.1002/ibd.20611

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wapenaar MC, Monsuur AJ, van Bodegraven AA, Weersma RK, Bevova MR, Linskens RK et al (2008) Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitis. Gut 57(4):463–467. doi:10.1136/gut.2007.133132

    Article  CAS  PubMed  Google Scholar 

  44. Valiente M, Andres-Pons A, Gomar B, Torres J, Gil A, Tapparel C et al (2005) Binding of PTEN to specific PDZ domains contributes to PTEN protein stability and phosphorylation by microtubule-associated serine/threonine kinases. J Biol Chem 280(32):28936–28943. doi:10.1074/jbc.M504761200

    Article  CAS  PubMed  Google Scholar 

  45. Wu X, Hepner K, Castelino-Prabhu S, Do D, Kaye MB, Yuan XJ et al (2000) Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci USA 97(8):4233–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR (2001) Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276(52):48627–48630. doi:10.1074/jbc.C100556200

    Article  CAS  PubMed  Google Scholar 

  47. Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo YY (2011) MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene 30(7):822–831. doi:10.1038/onc.2010.463

    Article  CAS  PubMed  Google Scholar 

  48. • Kitamura K, Seike M, Okano T, Matsuda K, Miyanaga A, Mizutani H et al. (2014) MiR-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Therap 13(2):444–453. doi:10.1158/1535-7163.MCT-13-0448. This work demonstrates that the mirR-134/487b/655 cluster is involved in the TGF-β1-induced EMT and resistance to EGFR inhibitor gefitinib, by directly targeting MAGI-2

  49. Li X, Li Z, Li N, Qi J, Fan K, Yin P et al (2013) MAGI2 enhances the sensitivity of BEL-7404 human hepatocellular carcinoma cells to staurosporine-induced apoptosis by increasing PTEN stability. Int J Mol Med 32(2):439–447. doi:10.3892/ijmm.2013.1411

    CAS  PubMed  Google Scholar 

  50. Hu Y, Li Z, Guo L, Wang L, Zhang L, Cai X et al (2007) MAGI-2 Inhibits cell migration and proliferation via PTEN in human hepatocarcinoma cells. Arch Biochem Biophys 467(1):1–9. doi:10.1016/j.abb.2007.07.027

    Article  CAS  PubMed  Google Scholar 

  51. Subauste MC, Nalbant P, Adamson ED, Hahn KM (2005) Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. J Biol Chem 280(7):5676–5681. doi:10.1074/jbc.M405561200

    Article  CAS  PubMed  Google Scholar 

  52. Chen YC, Huang RL, Huang YK, Liao YP, Su PH, Wang HC et al (2014) Methylomics analysis identifies epigenetically silenced genes and implies an activation of beta-catenin signaling in cervical cancer. Int J cancer 135(1):117–127. doi:10.1002/ijc.28658

    Article  CAS  PubMed  Google Scholar 

  53. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY et al (2011) The genomic complexity of primary human prostate cancer. Nature 470(7333):214–220. doi:10.1038/nature09744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahdian R, Nodouzi V, Asgari M, Rezaie M, Alizadeh J, Yousefi B et al (2014) Expression profile of MAGI2 gene as a novel biomarker in combination with major deregulated genes in prostate cancer. Mol Biol Rep 41(9):6125–6131. doi:10.1007/s11033-014-3491-0

    Article  CAS  PubMed  Google Scholar 

  55. Adamsky K, Arnold K, Sabanay H, Peles E (2003) Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 116(Pt 7):1279–1289

    Article  CAS  PubMed  Google Scholar 

  56. Yao R, Natsume Y, Noda T (2004) MAGI-3 is involved in the regulation of the JNK signaling pathway as a scaffold protein for frizzled and Ltap. Oncogene 23(36):6023–6030. doi:10.1038/sj.onc.1207817

    Article  CAS  PubMed  Google Scholar 

  57. He J, Bellini M, Inuzuka H, Xu J, Xiong Y, Yang X et al (2006) Proteomic analysis of beta1-adrenergic receptor interactions with PDZ scaffold proteins. J Biol Chem 281(5):2820–2827. doi:10.1074/jbc.M509503200

    Article  CAS  PubMed  Google Scholar 

  58. Yang X, Zheng J, Xiong Y, Shen H, Sun L, Huang Y et al (2010) Beta-2 adrenergic receptor mediated ERK activation is regulated by interaction with MAGI-3. FEBS Lett 584(11):2207–2212. doi:10.1016/j.febslet.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  59. Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q et al (2000) Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 275(28):21477–21485. doi:10.1074/jbc.M909741199

    Article  CAS  PubMed  Google Scholar 

  60. • Ma Q, Zhang Y, Meng R, Xie KM, Xiong Y, Lin S et al. (2015) MAGI3 Suppresses Glioma Cell Proliferation via Upregulation of PTEN Expression. Biomed Environ Sci: BES 8(7):502–529. doi:10.3967/bes2015.072. This work reveals how the loss of MAGI-3 expression in glioma cells enhances cell proliferation through a mechanism that downregulates PTEN expression and leads to the activation of the PI3 K/Akt pathway

  61. Ma Q, Yang Y, Feng D, Zheng S, Meng R, Fa P et al (2015) MAGI3 negatively regulates Wnt/beta-catenin signaling and suppresses malignant phenotypes of glioma cells. Oncotarget. 6(34):35851–35865. doi:10.18632/oncotarget.5323

    PubMed  PubMed Central  Google Scholar 

  62. Zhang H, Wang D, Sun H, Hall RA, Yun CC (2007) MAGI-3 regulates LPA-induced activation of Erk and RhoA. Cell Signal 19(2):261–268. doi:10.1016/j.cellsig.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  63. Lee SJ, Ritter SL, Zhang H, Shim H, Hall RA, Yun CC (2011) MAGI-3 competes with NHERF-2 to negatively regulate LPA2 receptor signaling in colon cancer cells. Gastroenterology 140(3):924–934. doi:10.1053/j.gastro.2010.11.054

    Article  CAS  PubMed  Google Scholar 

  64. Pawlowski KM, Maciejewski H, Majchrzak K, Dolka I, Mol JA, Motyl T et al (2013) Five markers useful for the distinction of canine mammary malignancy. BMC Vet Res 9:138. doi:10.1186/1746-6148-9-138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409. doi:10.1038/nature11154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim J, Kim S, Ko S, In YH, Moon HG, Ahn SK et al (2015) Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples. Genes Chromosom Cancer 54(11):681–691. doi:10.1002/gcc.22279

    Article  CAS  PubMed  Google Scholar 

  67. Mosquera JM, Varma S, Pauli C, MacDonald TY, Yashinskie JJ, Varga Z et al (2015) MAGI3-AKT3 fusion in breast cancer amended. Nature 520(7547):E11–E12. doi:10.1038/nature14265

    Article  CAS  PubMed  Google Scholar 

  68. Pugh TJ, Banerji S, Meyerson S (2015) Pugh et al. reply. Nature 520(7547):E12–E14. doi:10.1038/nature14266

    Article  CAS  PubMed  Google Scholar 

  69. Ohashi M, Sakurai M, Higuchi M, Mori N, Fukushi M, Oie M et al (2004) Human T-cell leukemia virus type 1 Tax oncoprotein induces and interacts with a multi-PDZ domain protein, MAGI-3. Virology 320(1):52–62. doi:10.1016/j.virol.2003.11.014

    Article  CAS  PubMed  Google Scholar 

  70. Massimi P, Shai A, Lambert P, Banks L (2008) HPV E6 degradation of p53 and PDZ containing substrates in an E6AP null background. Oncogene 27(12):1800–1804. doi:10.1038/sj.onc.1210810

    Article  CAS  PubMed  Google Scholar 

  71. Ainsworth J, Thomas M, Banks L, Coutlee F, Matlashewski G (2008) Comparison of p53 and the PDZ domain containing protein MAGI-3 regulation by the E6 protein from high-risk human papillomaviruses. Virol J 5:67. doi:10.1186/1743-422X-5-67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52(3):311–320

    Article  CAS  PubMed  Google Scholar 

  73. Hung TJ, Kemphues KJ (1999) PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development. 126(1):127–135

    CAS  PubMed  Google Scholar 

  74. Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S et al (2001) The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 20(14):3738–3748. doi:10.1093/emboj/20.14.3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomas FC, Sheth B, Eckert JJ, Bazzoni G, Dejana E, Fleming TP (2004) Contribution of JAM-1 to epithelial differentiation and tight-junction biogenesis in the mouse preimplantation embryo. J Cell Sci 117(Pt 23):5599–5608. doi:10.1242/jcs.01424

    Article  CAS  PubMed  Google Scholar 

  76. Hirano Y, Yoshinaga S, Takeya R, Suzuki NN, Horiuchi M, Kohjima M et al (2005) Structure of a cell polarity regulator, a complex between atypical PKC and Par6 PB1 domains. J Biol Chem 280(10):9653–9661. doi:10.1074/jbc.M409823200

    Article  CAS  PubMed  Google Scholar 

  77. Yamanaka T, Horikoshi Y, Suzuki A, Sugiyama Y, Kitamura K, Maniwa R et al (2001) PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6(8):721–731

    Article  CAS  PubMed  Google Scholar 

  78. Liu XF, Ishida H, Raziuddin R, Miki T (2004) Nucleotide exchange factor ECT2 interacts with the polarity protein complex Par6/Par3/protein kinase Czeta (PKCzeta) and regulates PKCzeta activity. Mol Cell Biol 24(15):6665–6675. doi:10.1128/MCB.24.15.6665-6675.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T et al (2003) Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr Biol 13(9):734–743

    Article  CAS  PubMed  Google Scholar 

  80. Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S (1998) Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development. 125(18):3607–3614

    CAS  PubMed  Google Scholar 

  81. Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T et al (1998) An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J cell Biol 143(1):95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M et al (2001) Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J cell Biol 152(6):1183–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Suzuki A, Ishiyama C, Hashiba K, Shimizu M, Ebnet K, Ohno S (2002) aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci 115(Pt 18):3565–3573

    Article  CAS  PubMed  Google Scholar 

  84. Takizawa S, Nagasaka K, Nakagawa S, Yano T, Nakagawa K, Yasugi T et al (2006) Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. Genes cells 11(4):453–464. doi:10.1111/j.1365-2443.2006.00954.x

    Article  CAS  PubMed  Google Scholar 

  85. Khursheed M, Bashyam MD (2014) Apico-basal polarity complex and cancer. J Biosci 39(1):145–155

    Article  CAS  PubMed  Google Scholar 

  86. Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al (2006) Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8(11):1235–1245. doi:10.1038/ncb1485

    Article  CAS  PubMed  Google Scholar 

  87. • Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK (2013) Loss of Par3 promotes breast cancer metastasis by compromising cell-cell cohesion. Nat Cell Biol 15(2):189–200. doi:10.1038/ncb2663. This work demonstrates that Par3 is lost in metastasis in human breast cancer and is associated with higher tumor grade

  88. Guo X, Wang M, Zhao Y, Wang X, Shen M, Zhu F et al (2015) Par3 regulates invasion of pancreatic cancer cells via interaction with Tiam1. Clin Exp Med. doi:10.1007/s10238-015-0365-2

    Google Scholar 

  89. Chen X, Macara IG (2005) Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7(3):262–269. doi:10.1038/ncb1226

    Article  CAS  PubMed  Google Scholar 

  90. Kunnev D, Ivanov I, Ionov Y (2009) Par-3 partitioning defective 3 homolog (C. elegans) and androgen-induced prostate proliferative shutoff associated protein genes are mutationally inactivated in prostate cancer cells. BMC Cancer 9:318. doi:10.1186/1471-2407-9-318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Rothenberg SM, Mohapatra G, Rivera MN, Winokur D, Greninger P, Nitta M et al (2010) A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res 70(6):2158–2164. doi:10.1158/0008-5472.CAN-09-3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zen K, Yasui K, Gen Y, Dohi O, Wakabayashi N, Mitsufuji S et al (2009) Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 28(32):2910–2918. doi:10.1038/onc.2009.148

    Article  CAS  PubMed  Google Scholar 

  93. Jan YJ, Ko BS, Liu TA, Wu YM, Liang SM, Chen SC et al (2013) Expression of partitioning defective 3 (Par-3) for predicting extrahepatic metastasis and survival with hepatocellular carcinoma. Int J Mol Sci 14(1):1684–1697. doi:10.3390/ijms14011684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dugay F, Le Goff X, Rioux-Leclerq N, Chesnel F, Jouan F, Henry C et al (2014) Overexpression of the polarity protein PAR-3 in clear cell renal cell carcinoma is associated with poor prognosis. Int J Cancer 134(9):2051–2060. doi:10.1002/ijc.28548

    Article  CAS  PubMed  Google Scholar 

  95. Dagher J, Dugay F, Rioux-Leclercq N, Verhoest G, Oger E, Bensalah K et al (2014) Cytoplasmic PAR-3 protein expression is associated with adverse prognostic factors in clear cell renal cell carcinoma and independently impacts survival. Hum Pathol 45(8):1639–1646. doi:10.1016/j.humpath.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  96. Nolan ME, Aranda V, Lee S, Lakshmi B, Basu S, Allred DC et al (2008) The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res 68(20):8201–8209. doi:10.1158/0008-5472.CAN-07-6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cunliffe HE, Jiang Y, Fornace KM, Yang F, Meltzer PS (2012) PAR6B is required for tight junction formation and activated PKCzeta localization in breast cancer. Am J Cancer Res 2(5):478–491

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307(5715):1603–1609. doi:10.1126/science.1105718

    Article  CAS  PubMed  Google Scholar 

  99. • Mu Y, Zang G, Engstrom U, Busch C, Landstrom M (2015) TGFbeta-induced phosphorylation of Par6 promotes migration and invasion in prostate cancer cells British J Cancer 112(7):1223–1231. doi:10.1038/bjc.2015.71. This work demonstrates that TGF-β induces the phosphorylation of Par6, and this change can be a novel biomarker for predicting prostate cancer progression

  100. Wang X, Nie J, Zhou Q, Liu W, Zhu F, Chen W et al (2008) Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-beta during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochim Biophys Acta 1782(1):51–59. doi:10.1016/j.bbadis.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  101. •• Gunaratne A, Thai BL, Di Guglielmo GM (2013) Atypical protein kinase C phosphorylates Par6 and facilitates transforming growth factor beta-induced epithelial-to-mesenchymal transition. Mol Cell Biol 33(5):874–886. doi:10.1128/MCB.00837-12. This work demonstrates that aPKC is an essential component of the signaling pathway that in non-small-cell lung cancer cooperates with TGF-β receptors to regulate EMT induced by phospho-Par6

  102. Nazarenko I, Jenny M, Keil J, Gieseler C, Weisshaupt K, Sehouli J et al (2010) Atypical protein kinase C zeta exhibits a proapoptotic function in ovarian cancer. Mol Cancer Res 8(6):919–934. doi:10.1158/1541-7786.MCR-09-0358

    Article  CAS  PubMed  Google Scholar 

  103. Whyte J, Thornton L, McNally S, McCarthy S, Lanigan F, Gallagher WM et al (2010) PKCzeta regulates cell polarisation and proliferation restriction during mammary acinus formation. J Cell Sci 123(Pt 19):3316–3328. doi:10.1242/jcs.065243

    Article  CAS  PubMed  Google Scholar 

  104. Galvez AS, Duran A, Linares JF, Pathrose P, Castilla EA, Abu-Baker S et al (2009) Protein kinase Czeta represses the interleukin-6 promoter and impairs tumorigenesis in vivo. Mol Cell Biol 29(1):104–115. doi:10.1128/MCB.01294-08

    Article  CAS  PubMed  Google Scholar 

  105. Kim JY, Valencia T, Abu-Baker S, Linares J, Lee SJ, Yajima T et al (2013) c-Myc phosphorylation by PKCzeta represses prostate tumorigenesis. Proc Natl Acad Sci USA 110(16):6418–6423. doi:10.1073/pnas.1221799110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kojima Y, Akimoto K, Nagashima Y, Ishiguro H, Shirai S, Chishima T et al (2008) The overexpression and altered localization of the atypical protein kinase C lambda/iota in breast cancer correlates with the pathologic type of these tumors. Hum Pathol 39(6):824–831. doi:10.1016/j.humpath.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  107. Paul A, Gunewardena S, Stecklein SR, Saha B, Parelkar N, Danley M et al (2014) PKClambda/iota signaling promotes triple-negative breast cancer growth and metastasis. Cell Death Differ 21(9):1469–1481. doi:10.1038/cdd.2014.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Regala RP, Weems C, Jamieson L, Khoor A, Edell ES, Lohse CM et al (2005) Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res 65(19):8905–8911. doi:10.1158/0008-5472.CAN-05-2372

    Article  CAS  PubMed  Google Scholar 

  109. Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP (2005) Atypical protein kinase Ciota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem 280(35):31109–31115. doi:10.1074/jbc.M505402200

    Article  CAS  PubMed  Google Scholar 

  110. Ichikawa Y, Nagashima Y, Morioka K, Akimoto K, Kojima Y, Ishikawa T et al (2014) Colorectal laterally spreading tumors show characteristic expression of cell polarity factors, including atypical protein kinase C lambda/iota, E-cadherin, beta-catenin and basement membrane component. Oncol Lett 8(3):977–984. doi:10.3892/ol.2014.2271

    PubMed  PubMed Central  Google Scholar 

  111. Cohen EE, Lingen MW, Zhu B, Zhu H, Straza MW, Pierce C et al (2006) Protein kinase C zeta mediates epidermal growth factor-induced growth of head and neck tumor cells by regulating mitogen-activated protein kinase. Cancer Res 66(12):6296–6303. doi:10.1158/0008-5472.CAN-05-3139

    Article  CAS  PubMed  Google Scholar 

  112. Mizushima T, Asai-Sato M, Akimoto K, Nagashima Y, Taguri M, Sasaki K et al (2015) Aberrant expression of the cell polarity regulator apkc lambda/iota is associated with disease progression in cervical intraepithelial neoplasia (cin): a Possible marker for predicting CIN prognosis. Int J Gynecol Pathol . doi:10.1097/PGP.0000000000000228

    Google Scholar 

  113. Yin J, Liu Z, Li H, Sun J, Chang X, Liu J et al (2014) Association of PKCzeta expression with clinicopathological characteristics of breast cancer. PLoS One 9(6):e90811. doi:10.1371/journal.pone.0090811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Eder AM, Sui X, Rosen DG, Nolden LK, Cheng KW, Lahad JP et al (2005) Atypical PKCiota contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA 102(35):12519–12524. doi:10.1073/pnas.0505641102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Valkova C, Mertens C, Weisheit S, Imhof D, Liebmann C (2010) Activation by tyrosine phosphorylation as a prerequisite for protein kinase Czeta to mediate epidermal growth factor receptor signaling to ERK. Mol Cancer Res 8(5):783–797. doi:10.1158/1541-7786.MCR-09-0164

    Article  CAS  PubMed  Google Scholar 

  116. Paget JA, Restall IJ, Daneshmand M, Mersereau JA, Simard MA, Parolin DA et al (2012) Repression of cancer cell senescence by PKCiota. Oncogene 31(31):3584–3596. doi:10.1038/onc.2011.524

    Article  CAS  PubMed  Google Scholar 

  117. •• Archibald A, Al-Masri M, Liew-Spilger A, McCaffrey L (2015) Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell 26(20):3578–3595. doi:10.1091/mbc.E15-05-0265. This work shows that increased expression of aPKC in epithelial cells promotes the nuclear accumulation of YAP; these results are confirmed in human cancers, thereby demonstrating that aPKC induces a transformed phenotype by deregulating the hippo pathway

  118. Mandai K, Nakanishi H, Satoh A, Obaishi H, Wada M, Nishioka H et al (1997) Afadin: a novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J Cell Biol 139(2):517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Prasad R, Gu Y, Alder H, Nakamura T, Canaani O, Saito H et al (1993) Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res 53(23):5624–5628

    CAS  PubMed  Google Scholar 

  120. Ooshio T, Kobayashi R, Ikeda W, Miyata M, Fukumoto Y, Matsuzawa N et al (2010) Involvement of the interaction of afadin with ZO-1 in the formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem 285(7):5003–5012. doi:10.1074/jbc.M109.043760

    Article  CAS  PubMed  Google Scholar 

  121. Ikeda W, Nakanishi H, Miyoshi J, Mandai K, Ishizaki H, Tanaka M et al (1999) Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J cell Biol 146(5):1117–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhadanov AB, Provance DW Jr, Speer CA, Coffin JD, Goss D, Blixt JA et al (1999) Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr Biol 9(16):880–888

    Article  CAS  PubMed  Google Scholar 

  123. Yamamoto T, Harada N, Kano K, Taya S, Canaani E, Matsuura Y et al (1997) The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 139(3):785–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Takahashi K, Nakanishi H, Miyahara M, Mandai K, Satoh K, Satoh A et al (1999) Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J Cell Biol 145(3):539–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kurita S, Ogita H, Takai Y (2011) Cooperative role of nectin-nectin and nectin-afadin interactions in formation of nectin-based cell-cell adhesion. J Biol Chem 286(42):36297–36303. doi:10.1074/jbc.M111.261768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tanaka-Okamoto M, Hori K, Ishizaki H, Itoh Y, Onishi S, Yonemura S et al (2011) Involvement of afadin in barrier function and homeostasis of mouse intestinal epithelia. J Cell Sci 124(Pt 13):2231–2240. doi:10.1242/jcs.081000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mandai K, Rikitake Y, Shimono Y, Takai Y (2013) Afadin/AF-6 and canoe: roles in cell adhesion and beyond. Prog Mol Biol Transl Sci 116:433–454. doi:10.1016/B978-0-12-394311-8.00019-4

    Article  CAS  PubMed  Google Scholar 

  128. Mandai K, Nakanishi H, Satoh A, Takahashi K, Satoh K, Nishioka H et al (1999) Ponsin/SH3P12: an l-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions. J Cell Biol 144(5):1001–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 275(36):27979–27988. doi:10.1074/jbc.M002363200

    CAS  PubMed  Google Scholar 

  130. Monteiro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM et al (2013) JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell 24(18):2849–2860. doi:10.1091/mbc.E13-06-0298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Saito K, Shiino T, Kurihara H, Harita Y, Hattori S, Ohta Y (2015) Afadin regulates RhoA/Rho-associated protein kinase signaling to control formation of actin stress fibers in kidney podocytes. Cytoskeleton. 72(3):146–156. doi:10.1002/cm.21211

    Article  CAS  PubMed  Google Scholar 

  132. Radziwill G, Weiss A, Heinrich J, Baumgartner M, Boisguerin P, Owada K et al (2007) Regulation of c-Src by binding to the PDZ domain of AF-6. EMBO J 26(11):2633–2644. doi:10.1038/sj.emboj.7601706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Carmena A, Speicher S, Baylies M (2006) The PDZ protein Canoe/AF-6 links Ras-MAPK, Notch and Wingless/Wnt signaling pathways by directly interacting with Ras. PLoS One 1:e66. doi:10.1371/journal.pone.0000066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. • Xu Y, Chang R, Peng Z, Wang Y, Ji W, Guo J et al. (2015) Loss of polarity protein AF6 promotes pancreatic cancer metastasis by inducing Snail expression. Nat Commun 6:7184. doi:10.1038/ncomms8184. This work demonstrates that depletion of afadin in pancreatic cancer promotes cell proliferation and metastasis through the upregulation of snail transcription factor

  135. • Yamamoto T, Mori T, Sawada M, Matsushima H, Ito F, Akiyama M et al. (2015) Loss of AF-6/afadin induces cell invasion, suppresses the formation of glandular structures and might be a predictive marker of resistance to chemotherapy in endometrial cancer. BMC Cancer 15:275. doi:10.1186/s12885-015-1286-x. This work demonstrates that afadin knockdown in human endometrial cancer induces resistance to chemotherapy

  136. Letessier A, Garrido-Urbani S, Ginestier C, Fournier G, Esterni B, Monville F et al (2007) Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene 26(2):298–307. doi:10.1038/sj.onc.1209772

    Article  CAS  PubMed  Google Scholar 

  137. Elloul S, Kedrin D, Knoblauch NW, Beck AH, Toker A (2014) The adherens junction protein afadin is an AKT substrate that regulates breast cancer cell migration. Mol Cancer Res 12(3):464–476. doi:10.1158/1541-7786.MCR-13-0398

    Article  CAS  PubMed  Google Scholar 

  138. • Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT et al. (2014) Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. Biochimica Biophys Acta 1843(3):618–628. doi:10.1016/j.bbamcr.2013.12.013. This work demonstrates the interaction between the cAMP-activated channel, CFTR, and afadin, and how the lower expression of CFTR and Afadin correlates with poor prognosis of colon cancer patients

  139. Ullmer C, Schmuck K, Figge A, Lubbert H (1998) Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett 424(1–2):63–68

    Article  CAS  PubMed  Google Scholar 

  140. Lemmers C, Medina E, Delgrossi MH, Michel D, Arsanto JP, Le Bivic A (2002) hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J Biol Chem 277(28):25408–25415. doi:10.1074/jbc.M202196200

    Article  CAS  PubMed  Google Scholar 

  141. Kamberov E, Makarova O, Roh M, Liu A, Karnak D, Straight S et al (2000) Molecular cloning and characterization of Pals, proteins associated with mLin-7. J Biol Chem 275(15):11425–11431

    Article  CAS  PubMed  Google Scholar 

  142. Adachi M, Hamazaki Y, Kobayashi Y, Itoh M, Tsukita S, Furuse M et al (2009) Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight-junction proteins. Mol Cell Biol 29(9):2372–2389. doi:10.1128/MCB.01505-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277(1):455–461. doi:10.1074/jbc.M109005200

    Article  CAS  PubMed  Google Scholar 

  144. Roh MH, Liu CJ, Laurinec S, Margolis B (2002) The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 277(30):27501–27509. doi:10.1074/jbc.M201177200

    Article  CAS  PubMed  Google Scholar 

  145. Sugihara-Mizuno Y, Adachi M, Kobayashi Y, Hamazaki Y, Nishimura M, Imai T et al (2007) Molecular characterization of angiomotin/JEAP family proteins: interaction with MUPP1/Patj and their endogenous properties. Genes Cells 12(4):473–486. doi:10.1111/j.1365-2443.2007.01066.x

    Article  CAS  PubMed  Google Scholar 

  146. Roh MH, Makarova O, Liu CJ, Shin K, Lee S, Laurinec S et al (2002) The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of crumbs and discs lost. J Cell Biol 157(1):161–172. doi:10.1083/jcb.200109010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Michel D, Arsanto JP, Massey-Harroche D, Beclin C, Wijnholds J, Le Bivic A (2005) PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. J Cell Sci 118(Pt 17):4049–4057. doi:10.1242/jcs.02528

    Article  CAS  PubMed  Google Scholar 

  148. Straight SW, Shin K, Fogg VC, Fan S, Liu CJ, Roh M et al (2004) Loss of PALS1 expression leads to tight junction and polarity defects. Mol Biol Cell 15(4):1981–1990. doi:10.1091/mbc.E03-08-0620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hurd TW, Gao L, Roh MH, Macara IG, Margolis B (2003) Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 5(2):137–142. doi:10.1038/ncb923

    Article  CAS  PubMed  Google Scholar 

  150. Krahn MP, Buckers J, Kastrup L, Wodarz A (2010) Formation of a Bazooka-Stardust complex is essential for plasma membrane polarity in epithelia. J Cell Biol 190(5):751–760. doi:10.1083/jcb.201006029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Djiane A, Yogev S, Mlodzik M (2005) The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 121(4):621–631. doi:10.1016/j.cell.2005.03.014

    Article  CAS  PubMed  Google Scholar 

  152. Zhou W, Hong Y (2012) Drosophila Patj plays a supporting role in apical-basal polarity but is essential for viability. Development 139(16):2891–2896. doi:10.1242/dev.083162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sen A, Nagy-Zsver-Vadas Z, Krahn MP (2012) Drosophila PATJ supports adherens junction stability by modulating Myosin light chain activity. J Cell Biol 199(4):685–698. doi:10.1083/jcb.201206064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shin K, Straight S, Margolis B (2005) PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J Cell Biol 168(5):705–711. doi:10.1083/jcb.200408064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Assemat E, Crost E, Ponserre M, Wijnholds J, Le Bivic A, Massey-Harroche D (2013) The multi-PDZ domain protein-1 (MUPP-1) expression regulates cellular levels of the PALS-1/PATJ polarity complex. Exp Cell Res 319(17):2514–2525. doi:10.1016/j.yexcr.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  156. Shin K, Wang Q, Margolis B (2007) PATJ regulates directional migration of mammalian epithelial cells. EMBO Rep 8(2):158–164. doi:10.1038/sj.embor.7400890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Du D, Xu F, Yu L, Zhang C, Lu X, Yuan H et al (2010) The tight junction protein, occludin, regulates the directional migration of epithelial cells. Dev Cell 18(1):52–63. doi:10.1016/j.devcel.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  158. Heydecke D, Meyer D, Ackermann F, Wilhelm B, Gudermann T, Boekhoff I (2006) The multi PDZ domain protein MUPP1 as a putative scaffolding protein for organizing signaling complexes in the acrosome of mammalian spermatozoa. J Androl 27(3):390–404. doi:10.2164/jandrol.05166

    Article  CAS  PubMed  Google Scholar 

  159. Ackermann F, Zitranski N, Borth H, Buech T, Gudermann T, Boekhoff I (2009) CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and prevents spontaneous acrosomal exocytosis. J Cell Sci 122(Pt 24):4547–4557. doi:10.1242/jcs.058263

    Article  PubMed  Google Scholar 

  160. Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E (2002) Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 159(2):361–372. doi:10.1083/jcb.200207050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kruse LC, Walter NA, Buck KJ (2014) Mpdz expression in the caudolateral substantia nigra pars reticulata is crucially involved in alcohol withdrawal. Genes Brain Behav 13(8):769–776. doi:10.1111/gbb.12171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lanaspa MA, Almeida NE, Andres-Hernando A, Rivard CJ, Capasso JM, Berl T (2007) The tight junction protein, MUPP1, is up-regulated by hypertonicity and is important in the osmotic stress response in kidney cells. Proc Natl Acad Sci USA 104(34):13672–13677. doi:10.1073/pnas.0702752104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen Z, Leibiger I, Katz AI, Bertorello AM (2009) Pals-associated tight junction protein functionally links dopamine and angiotensin II to the regulation of sodium transport in renal epithelial cells. Br J Pharmacol 158(2):486–493. doi:10.1111/j.1476-5381.2009.00299.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Delous M, Hellman NE, Gaude HM, Silbermann F, Le Bivic A, Salomon R et al (2009) Nephrocystin-1 and nephrocystin-4 are required for epithelial morphogenesis and associate with PALS1/PATJ and Par6. Hum Mol Genet 18(24):4711–4723. doi:10.1093/hmg/ddp434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Duning K, Rosenbusch D, Schluter MA, Tian Y, Kunzelmann K, Meyer N et al (2010) Polycystin-2 activity is controlled by transcriptional coactivator with PDZ binding motif and PALS1-associated tight junction protein. J Biol Chem 285(44):33584–33588. doi:10.1074/jbc.C110.146381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee SS, Glaunsinger B, Mantovani F, Banks L, Javier RT (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 74(20):9680–9693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT (2005) Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 118(Pt 18):4283–4293. doi:10.1242/jcs.02560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Massimi P, Gammoh N, Thomas M, Banks L (2004) HPV E6 specifically targets different cellular pools of its PDZ domain-containing tumour suppressor substrates for proteasome-mediated degradation. Oncogene 23(49):8033–8039. doi:10.1038/sj.onc.1207977

    Article  CAS  PubMed  Google Scholar 

  169. Storrs CH, Silverstein SJ (2007) PATJ, a tight junction-associated PDZ protein, is a novel degradation target of high-risk human papillomavirus E6 and the alternatively spliced isoform 18 E6. J Virol 81(8):4080–4090. doi:10.1128/JVI.02545-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Martin TA, Watkins G, Mansel RE, Jiang WG (2004) Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer 40(18):2717–2725. doi:10.1016/j.ejca.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  171. Lennon FE, Mirzapoiazova T, Mambetsariev N, Mambetsariev B, Salgia R, Singleton PA (2014) Transactivation of the receptor-tyrosine kinase ephrin receptor A2 is required for the low molecular weight hyaluronan-mediated angiogenesis that is implicated in tumor progression. J Biol Chem 289(35):24043–24058. doi:10.1074/jbc.M114.554766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Citi S, Sabanay H, Jakes R, Geiger B, Kendrick-Jones J (1988) Cingulin, a new peripheral component of tight junctions. Nature 333(6170):272–276. doi:10.1038/333272a0

    Article  CAS  PubMed  Google Scholar 

  173. Ohnishi H, Nakahara T, Furuse K, Sasaki H, Tsukita S, Furuse M (2004) JACOP, a novel plaque protein localizing at the apical junctional complex with sequence similarity to cingulin. J Biol Chem 279(44):46014–46022. doi:10.1074/jbc.M402616200

    Article  CAS  PubMed  Google Scholar 

  174. • Yano T, Matsui T, Tamura A, Uji M, Tsukita S (2013) The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J Cell Biol 203(4):605–614. doi:10.1083/jcb.201304194. This work reveals the novel association of cingulin with microtubules and how the phosphorylation of AMPK target sites in cingulin facilitates this interaction

  175. Pulimeno P, Paschoud S, Citi S (2011) A role for ZO-1 and PLEKHA7 in recruiting paracingulin to tight and adherens junctions of epithelial cells. J Biol Chem 286(19):16743–16750. doi:10.1074/jbc.M111.230862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Meng W, Mushika Y, Ichii T, Takeichi M (2008) Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135(5):948–959. doi:10.1016/j.cell.2008.09.040

    Article  CAS  PubMed  Google Scholar 

  177. Terry SJ, Zihni C, Elbediwy A, Vitiello E, Leefa Chong San IV, Balda MS et al (2011) Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nat Cell Biol 13(2):159–166. doi:10.1038/ncb2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Aijaz S, D’Atri F, Citi S, Balda MS, Matter K (2005) Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev Cell 8(5):777–786. doi:10.1016/j.devcel.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  179. Guillemot L, Paschoud S, Jond L, Foglia A, Citi S (2008) Paracingulin regulates the activity of Rac1 and RhoA GTPases by recruiting Tiam1 and GEF-H1 to epithelial junctions. Mol Biol Cell 19(10):4442–4453. doi:10.1091/mbc.E08-06-0558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Samarin SN, Ivanov AI, Flatau G, Parkos CA, Nusrat A (2007) Rho/Rho-associated kinase-II signaling mediates disassembly of epithelial apical junctions. Mol Biol Cell 18(9):3429–3439. doi:10.1091/mbc.E07-04-0315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. •• Guillemot L, Guerrera D, Spadaro D, Tapia R, Jond L, Citi S (2014) MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. Mol Biol Cell 25(13):1995–2005. doi:10.1091/mbc.E13-11-0680. This work shows how the depletion of both cingulin and paracingulin does not affect Rac1 activation due to the decreased junctional localization of Rac1 inhibitor MgcRac Gap

  182. Fesenko I, Kurth T, Sheth B, Fleming TP, Citi S, Hausen P (2000) Tight junction biogenesis in the early Xenopus embryo. Mech Dev 96(1):51–65

    Article  CAS  PubMed  Google Scholar 

  183. Fleming TP, Hay M, Javed Q, Citi S (1993) Localisation of tight junction protein cingulin is temporally and spatially regulated during early mouse development. Development. 117(3):1135–1144

    CAS  PubMed  Google Scholar 

  184. Citi S, Amorosi A, Franconi F, Giotti A, Zampi G (1991) Cingulin, a specific protein component of tight junctions, is expressed in normal and neoplastic human epithelial tissues. Am J Pathol 138(4):781–789

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Langbein L, Pape UF, Grund C, Kuhn C, Praetzel S, Moll I et al (2003) Tight junction-related structures in the absence of a lumen: occludin, claudins and tight junction plaque proteins in densely packed cell formations of stratified epithelia and squamous cell carcinomas. Eur J Cell Biol 82(8):385–400. doi:10.1078/0171-9335-00330

    Article  CAS  PubMed  Google Scholar 

  186. Bordin M, D’Atri F, Guillemot L, Citi S (2004) Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol Cancer Res 2(12):692–701

    CAS  PubMed  Google Scholar 

  187. Doyle JP, Stempak JG, Cowin P, Colman DR, D’Urso D (1995) Protein zero, a nervous system adhesion molecule, triggers epithelial reversion in host carcinoma cells. J Cell Biol 131(2):465–482

    Article  CAS  PubMed  Google Scholar 

  188. Zuo T, Cao L, Li X, Zhang Q, Xue C, Tang Q (2015) The squid ink polysaccharides protect tight junctions and adherens junctions from chemotherapeutic injury in the small intestinal epithelium of mice. Nutr Cancer 67(2):364–371. doi:10.1080/01635581.2015.989369

    Article  CAS  PubMed  Google Scholar 

  189. Nishimura M, Kakizaki M, Ono Y, Morimoto K, Takeuchi M, Inoue Y et al (2002) JEAP, a novel component of tight junctions in exocrine cells. J Biol Chem 277(7):5583–5587. doi:10.1074/jbc.M110154200

    Article  CAS  PubMed  Google Scholar 

  190. Bratt A, Wilson WJ, Troyanovsky B, Aase K, Kessler R, Van Meir EG et al (2002) Angiomotin belongs to a novel protein family with conserved coiled-coil and PDZ binding domains. Gene 298(1):69–77

    Article  CAS  PubMed  Google Scholar 

  191. Zheng Y, Vertuani S, Nystrom S, Audebert S, Meijer I, Tegnebratt T et al (2009) Angiomotin-like protein 1 controls endothelial polarity and junction stability during sprouting angiogenesis. Circ Res 105(3):260–270. doi:10.1161/CIRCRESAHA.109.195156

    Article  CAS  PubMed  Google Scholar 

  192. Oka T, Schmitt AP, Sudol M (2012) Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 31(1):128–134. doi:10.1038/onc.2011.216

    Article  CAS  PubMed  Google Scholar 

  193. DeRan M, Yang J, Shen CH, Peters EC, Fitamant J, Chan P et al (2014) Energy stress regulates hippo-YAP signaling involving AMPK-mediated regulation of angiomotin-like 1 protein. Cell Rep 9(2):495–503. doi:10.1016/j.celrep.2014.09.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jiang WG, Watkins G, Douglas-Jones A, Holmgren L, Mansel RE (2006) Angiomotin and angiomotin like proteins, their expression and correlation with angiogenesis and clinical outcome in human breast cancer. BMC Cancer 6:16. doi:10.1186/1471-2407-6-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 237241 from the National Council for Science and Technology of Mexico (Conacyt). J. M., J. M. O. O., H. G. G., A. R. S., and O. V. S. are recipients of doctoral fellowships from Conacyt (262817, 233210, 282075, 233193, and 243103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza Gonzalez-Mariscal.

Ethics declarations

Conflict of Interest

Lorenza Gonzalez-Mariscal, Jael Miranda, Mario Ortega-Olvera, Helios Gallego-Gutierrez, Arturo Raya-Sandino, and Orlando Vargas-Sierra declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Leaky Junctions in Cancer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Mariscal, L., Miranda, J., Ortega-Olvera, J.M. et al. Involvement of Tight Junction Plaque Proteins in Cancer. Curr Pathobiol Rep 4, 117–133 (2016). https://doi.org/10.1007/s40139-016-0108-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-016-0108-4

Keywords

Navigation