Skip to main content
Log in

CYP2E1- and TNFalpha/LPS-Induced Oxidative Stress and MAPK Signaling Pathways in Alcoholic Liver Disease

  • Cytokines That Affect Liver Fibrosis and Activation of Hepatic Myofibroblasts (Tatiana Kisseleva, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

CYP2E1-induced oxidative stress plays a central role in the development and progression of alcohol-induced liver injury. Ethanol-induced intestinal hyperpermeability and endotoxemia with activation of Kupffer cells and production of cytokines such as TNFα also play a key role in ethanol liver injury. This review discusses studies in mice as to how oxidant stress from ethanol or pyrazole induction of CYP2E1 sensitizes the liver to the toxicity of TNFα and LPS and that activation of mitogen-activated protein kinases JNK and p38 MAPK plays a role in this potentiated hepatotoxicity. Thus, two independent risk factors believed to be important for alcohol liver injury, namely ethanol induction of CYP2E1 and ethanol-elevation of TNFα, interact with each other to promote liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Adachi M, Ishii H (2002) Role of mitochondria in alcoholic liver injury. Free Radic Biol Med 32:487–491

    Article  CAS  PubMed  Google Scholar 

  2. Bailey SM, Cunningham CC (2002) Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic Biol Med 32:11–16

    Article  CAS  PubMed  Google Scholar 

  3. Lieber CS (1997) Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 77:517–544

    CAS  PubMed  Google Scholar 

  4. Guengerich FP, Kim DH, Iwasaki M (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4:168–179

    Article  CAS  PubMed  Google Scholar 

  5. Koop DR (1992) Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J 6:724–730

    CAS  PubMed  Google Scholar 

  6. Lieber CS (1999) Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968-1998)–a review. Alcohol Clin Exp Res 23:991–1007

    CAS  PubMed  Google Scholar 

  7. Lieber CS, Rubin E, DeCarli LM (1970) Hepatic microsomal ethanol oxidizing system (MEOS): differentiation from alcohol dehydrogenase and NADPH oxidase. Biochem Biophys Res Commun 40:858–865

    Article  CAS  PubMed  Google Scholar 

  8. Nordmann R, Ribiere C, Rouach H (1992) Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic Biol Med 12:219–240

    Article  CAS  PubMed  Google Scholar 

  9. Morimoto M, Zern MA, Hagbjork AL, Ingelman-Sundberg M, French SW (1994) Fish oil, alcohol, and liver pathology: role of cytochrome P450 2E1. Proc Soc Exp Biol Med 207:197–205

    Article  CAS  PubMed  Google Scholar 

  10. Tsukamoto H, Horne W, Kamimura S, Niemela O, Parkkila S, Yla-Herttula S, Brittenham GM (1995) Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 96:620–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Albano E, Clot P, Morimoto MT, Tomasi A, Ingelman-Sundberg M, French SW (1996) Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology 23:1551–1563

    Article  Google Scholar 

  12. Gouillon Z, Lucas DJ, Li J, Hagbjork AL, French BA, Fu P, Fang C, Ingelman-Sundberg M, Donohue TM Jr, French SW (2000) Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc Soc Exp Biol Med 224:302–308

    Article  CAS  PubMed  Google Scholar 

  13. Kim ND, Kwak MK, Kim SG (1997) Inhibition of cytochrome P450 2E1 expression by 2-(allylthio)pyrazine, a potential chemoprotective agent: hepatoprotective effects. Biochem Pharmacol 53:261–269

    Article  CAS  PubMed  Google Scholar 

  14. Morimoto M, Hagbjork AL, Nanji AA, Ingelman-Sundberg M, Lindros K, Fu PC, Albano E, French SW (1993) Role of cytochrome P4502E1 in alcoholic liver disease pathogenesis. Alcohol 10:459–464

    Article  CAS  PubMed  Google Scholar 

  15. Chen Q, Cederbaum AI (1997) Cytotoxicity and apoptosis produced by cytochrome P450 2E1 in Hep G2 cells. Mol Pharmacol 53:638–648

    Google Scholar 

  16. Dai Y, Rashba-Step J, Cederbaum AI (1993) Stable expression of human cytochrome P4502E1 in HepG2 cells: characterization of catalytic activities and production of reactive oxygen intermediates. Biochemistry 32:6928–6937

    Article  CAS  PubMed  Google Scholar 

  17. Chen Q, Galleano M, Cederbaum AI (1998) Cytotoxicity and apoptosis produced by arachidonic acid in HepG2 cells overexpressing human cytochrome P-4502E1. Alcohol Clin Exp Res 22:782–784

    Article  CAS  PubMed  Google Scholar 

  18. Dai Y, Cederbaum AI (1995) Cytotoxicity of acetaminophen in human cytochrome P4502E1-transfected HepG2 cells. J Pharmacol Exp Ther 273:1497–1505

    CAS  PubMed  Google Scholar 

  19. Wu D, Cederbaum AI (1996) Ethanol cytotoxicity to a transfected HepG2 cell line expressing human cytochrome P4502E1. J Biol Chem 271:23914–23919

    Article  CAS  PubMed  Google Scholar 

  20. Wu D, Cederbaum AI (2001) Removal of glutathione produces apoptosis and necrosis in HepG2 cells overexpressing CYP2E1. Alcohol Clin Exp Res 25:619–628

    Article  CAS  PubMed  Google Scholar 

  21. Wu D, Cederbaum AI (2000) Ethanol and arachidonic acid produce toxicty in hepatocytes from pyrazole-treated rats with high levels of CYP2E1. Mol Cell Biochem 204:157–167

    Article  CAS  PubMed  Google Scholar 

  22. Wu D, Wang X, Zhou R, Cederbaum AI (2010) CYP2E1 enhances ethanol-induced lipid accumulation but impairs autophaghy in HepG2 E47 cells. Biochem Biophys Res Commun 402:116–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Osna NA, Clemens DL, Donohue TM Jr (2003) Interferon gamma enhances proteasome activity in recombinant Hep G2 cells that express cytochrome P4502E1: modulation by ethanol. Biochem Pharmacol 66:697–710

    Article  CAS  PubMed  Google Scholar 

  24. Osna NA, Clemens DL, Donohue TM Jr (2005) Ethanol metabolism alters interferon gamma signaling in recombinant HepG2 cells. Hepatology 42:1109–1117

    Article  CAS  PubMed  Google Scholar 

  25. Osna NA, White RL, Todero S, McVicker BL, Thiele GM, Clemens D, Tuma DJ, Donohue TM Jr (2007) Ethanol-induced oxidative stress suppresses generation of peptides for antigen presentation by hepatoma cells. Hepatology 45:53–61

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569:101–110

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez FJ (2007) The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos 35:1–8

    Article  CAS  PubMed  Google Scholar 

  28. Lu Y, Zhuge J, Wang X, Bai J, Cederbaum AI (2008) Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47:1483–1494

    Article  CAS  PubMed  Google Scholar 

  29. Morgan K, French SW, Morgan TR (2002) Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 36:122–134

    Article  CAS  PubMed  Google Scholar 

  30. Cheung C, Gonzalez FJ (2008) Humanized mouse lines and their application for prediction of human drug metabolism and toxicological risk assessment. J Pharmacol Exp Ther 327:288–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cheung C, Gonzalez FJ (2005) The cyp2e1-humanized transgenic mouse: role of cyp2e1 in acetaminophen hepatotoxicity. Drug Metab Dispos 33:449–457

    Article  CAS  PubMed  Google Scholar 

  32. Lu Y, Wu D, Wang X, Ward SC, Cederbaum A (2010) I, Chronic alcohol-induced liver injury and oxidant stress is decreased in cytochrome P4502E1 knockout Mmce and restored in humanized cytochrome P4502E1 knockin mice. Free Radic Biol Med 49:1406–1416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kono H, Bradford BU, Yin M, Sulik KK, Koop DR, Peters JM, Gonzalez FJ, McDonald T, Dikalova A, Kadiiska MB, Mason RP, Thurman RG (1999) CYP2E1 is not involved in early alcohol-induced liver injury. Am J Physiol 277:G1259–G1267

    CAS  PubMed  Google Scholar 

  34. Koop DR, Klopfenstein B, Iimuro Y, Thurman RG (1997) Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with intragastric alcohol despite the induction of CYP2E1. Mol Pharmacol 51:944–950

    CAS  PubMed  Google Scholar 

  35. Lu Y, Cederbaum AI (2008) CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med 44:723–738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bradford BU, Kono H, Isayama F, Kosyk O, Wheeler MD, Akiyama TE, Bleye L, Krausz KW, Gonzalez FJ, Koop DR, Rusyn I (2005) Cytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver. Hepatology 41:336–344

    Article  CAS  PubMed  Google Scholar 

  37. • Wang HJ, Gao B, Zakhari S, Nagy LE (2012) Inflammation in alcoholic liver disease. Annu Rev Nutr 32:343–368. Excellent review which summarizes recent advances on the origins and roles of various inflammatory components and ethanol metabolites in alcoholic liver disease

  38. An L, Wang X, Cederbaum AI (2012) Cytokines in alcoholic liver disease. Arch Toxicol 86:1337–1348

    Article  CAS  PubMed  Google Scholar 

  39. Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG (1994) Inactivation of Kupffer cells prevents early alcohol -induced liver injury. Hepatology 20:453–460

    Article  CAS  PubMed  Google Scholar 

  40. Rao RK, Seth A, Sheth P (2004) Recent advances in alcoholic liver diseases. I. Role of intestinal impermeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 286:G881–G884

    Article  CAS  PubMed  Google Scholar 

  41. Kono H, Rusyn I, Yin M, Gabele E, Yamashina S, Dikalova A, Kadiiiska MB, Connor HD, Mason RP, Segal BH, Holland SM, Thurman RG, Bradford BU (2000) NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest 106:867–872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yin M, Wheeler MD, Kono H, Bradford BU, Galluci RM, Luster MI, Thurman RG (1999) Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117:942–952

    Article  CAS  PubMed  Google Scholar 

  43. Iimuro Y, Galluci RM, Luster MI, Kono H, Thurman RG (1997) Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 26:1530–1537

    Article  CAS  PubMed  Google Scholar 

  44. Koop, Chernovsky A, Brass EP (1991) Identification and induction of cytochrome P4502E1 in rat Kuppfer cells. J Pharmacol Exp Ther 258:1072–1076

    CAS  PubMed  Google Scholar 

  45. Pastorino JG, Hoek JB (2000) Ethanol potentiates tumor necrosis factor-alpha cytotoxicity in hepatoma cells and primary rat hepatocytes by promoting induction of the mitochondrial permeability transition. Hepatology 31:1141–1152

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Jones BE, Bradham C, Czaja M (2002) Increased cytochrome P-450 2E1 expression sensitizes hepatocytes to c-Jun-mediated cell death from TNF-alpha. Am J Physiol Gastrointest Liver Physiol 282:G257–G266

    Article  CAS  PubMed  Google Scholar 

  47. Cederbaum AI, Yang L, Wang X, Wu D (2012) CYP2E1 sensitizes the liver to LPS-and TNFα-induced toxicity via elevated oxidative and nitrosative stress and activation of ASK-1 and JNK mitogen-activated kinases. Int J Hepatol 2012(582790):1–19

    Article  CAS  Google Scholar 

  48. Lu Y, Cederbaum AI (2010) potentiation of LPS and TNFα-induced hepatotoxicity by mechanisms involving enhanced oxidative stress and nitrosative stress, activation of MAP kinases and mitochondrial dysfunction. Genes Nutr. 5:149–167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. • Forsyth CB, Voigt R, Keshavarzian A (2014) Intestinal CYP2E1: a mediator of alcohol-induced gut disease. Redox Biol 3:40–46. Review which summarizes recent studies as to how intestinal CYP2E1-derived reactive oxygen species cause intestinal hyperpermeability including a novel CYP2E1-circadian CLOCK protein mechanism for alcoholic liver disease

  50. Forsyth CB, Voigt RM, Shaikh M, Tang Y, Cederbaum AI, Turek FW, Keshavarzian A (2013) Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermaebility. Am J Physiol Gastrointest Liver Physiol 305:G185–G195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Abdelmeggeed MA, Banerjee AJ, Kang S, Yoo SH, Yun JW, Gonzalez FJ, Keshavarzian A, Song BJ (2013) CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis and apoptosis. Free Radic Biol Med 65:1238–1245

    Article  CAS  Google Scholar 

  52. Lu Y, Cederbaum AI (2006) Enhancement by pyrazole of lipopolysaccharide-induced liver injury in mice; role of cytochrome P4502E1 and 2A5. Hepatology 44:263–274

    Article  CAS  PubMed  Google Scholar 

  53. Yang L, Wu D, Cederbaum AI (2014) CYP2E1, oxidative stress and MAPK signaling pathways in alcohol-induced hepatotoxicity. J Biochem Pharmacol Res 2:74–90

    Google Scholar 

  54. McCubrey JA, Franklin RA (2006) Reactive oxygen intermediates and signaling through kinase pathways. Antioxid Redox Signal 8:1745–1748

    Article  CAS  PubMed  Google Scholar 

  55. Sturgill TW, Wu J (1991) Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. Biochim Biophys Acta 1092:350–357

    Article  CAS  PubMed  Google Scholar 

  56. Ichijo H, Nishida E, Irie K, ten Deijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275:90–94

    Article  CAS  PubMed  Google Scholar 

  57. Czaja MJ (2003) The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastrointest Liver Physiol 284:G875–G879

    Article  CAS  PubMed  Google Scholar 

  58. Bae MA, Pie JE, Song BJ (2001) Acetaminophen induces apoptosis of C6 glioma cells by activating the c-Jun NH(2)-terminal protein kinase-related cell death pathway. Mol Pharmacol 60:847–856

    CAS  PubMed  Google Scholar 

  59. Wu D, Cederbaum AI (2008) Cytochrome P4502E1 sensitizes to tumor necrosis factor alpha-induced liver injury through activation of mitogen-activated protein kinases in mice. Hepatology 47:1005–1017

    Article  CAS  PubMed  Google Scholar 

  60. Pastorino JG, Shulga N, Hoek JB (2003) TNF-alpha-induced cell death in ethanol-exposed cells depends on p38 MAPK signaling but is independent of Bid and caspase-8. Am J Physiol Gastrointest Liver Physiol 285:G503–G516

    Article  CAS  PubMed  Google Scholar 

  61. Bardag-Gorce F, French BA, French JM, Dedes J, Li J, French SW (2006) Gene expression patterns of the liver in response to alcohol: in vivo and in vitro models compared. Exp Mol Pathol 80:241–251

    Article  CAS  PubMed  Google Scholar 

  62. Li J, Bardag-Gorce F, Oliva J, Dedes J, French BA, French SW (2010) Gene expression modifications in the liver caused by binge drinking and S-adenosylmethionine feeding. The role of epigenetic changes. Genes Nutr 5:169–179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Aroor AR, James TT, Jackson DE, Shukla SD (2010) Differential changes in MAP kinases, histone modifications, and liver injury in rats acutely treated with ethanol. Alcohol Clin Exp Res 34:1543–1551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszen M (2009) Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling. Biochem Pharmacol 78:301–314

  65. Oak S, Mandrekar P, Catalano D, Kodys K, Szabo G (2006) TLR2- and TLR4-mediated signals determine attenuation or augmentation of inflammation by acute alcohol in monocytes. J Immunol 176:7628–7635

    Article  CAS  PubMed  Google Scholar 

  66. • Schattenberg JM, Czaja MJ (2014) Regulation of the effects of CYP2E1-oxidative stress by JNK signaliing. Redox Biol 3:7–15. Recent review on mechanisms by which chronic oxidative stress generated by alcohol/CYP2E1 affect mitogen activated protein kinase c-Jun-N-terminal kinase (JNK) signaling pathways and how this plays a role in liver pathologies including alcoholic liver disease

  67. Wu D, Cederbaum AI (2010) Activation of ASK-1 and downstream MAP kinases in cytochrome P4502E1 potentiated tumor necrosis factor alpha liver injury. Free Radic Biol Med 49:348–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Wang X, Lu Y, Xie B, Cederbaum AI (2009) Chronic ethanol feeding potentiates Fas Jo2-induced hepatotoxicity: role of CYP2E1 and TNF-alpha and activation of JNK and P38 MAP kinase. Free Radic Biol Med 47:518–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Wang X, Cederbaum AI (2008) S-adenosyl-l-methionine decreases the elevated hepatotoxicity induced by Fas agonistic antibody plus acute ethanol pretreatment in mice. Arch Biochem Biophys 477:1–11

    Article  CAS  PubMed  Google Scholar 

  70. Liu H, Nishitoh H, Ichijo H, Kyriakis JM (2000) Activation of apoptosis signal-regulating kinase1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20:2198–2208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Kondoh K, Nishida E (2007) Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 1773:1227–1237

    Article  CAS  PubMed  Google Scholar 

  72. Teng CH, Huang WN, Meng TC (2007) Several dual specificity phosphatases coordinate to control the magnitude and duration of JNK activation in signaling response to oxidative stress. J Biol Chem 282:28395–28407

    Article  CAS  PubMed  Google Scholar 

  73. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661

    Article  CAS  PubMed  Google Scholar 

  74. Ronis MJ, Korourian S, Blackburn ML, Badeaux J, Badger TM (2010) The role of ethanol metabolism in development of alcoholic steatohepatitis in the rat. Alcohol 44:157–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Hoek JB, Cahill A, Pastorino JG (2002) Alcohol and mitochondria : a dysfunctional relationship. Gastroenterology 122:2049–2063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Passeri MJ, Cinaroglo A, Gao C, Sadler KC (2009) Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49:443–452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Zeng T, Xie KQ (2009) Ethanol and liver: recent advances in the mechanisms of ethanol-induced hepatosteatosis. Arch Toxicol 83:1075–1081

    Article  CAS  PubMed  Google Scholar 

  78. • Ding WX, Li M, Chen X, Ni HN, Lin CW, Gao W, Lu B, Stolz DB, Clemens DL, Yin XM (2010) Autophagy reduces acute ethanol -induced hepatotoxicity and steatosis in mice. Gastroenterol 139:1740–1752. One of the first studies on the effects of acute alcohol and ethanol in vitro on autophagy and how macroautophagy protects against ethanol-induced fat accumulation and liver toxicity

  79. • Lin CW, Zhang H, Li M, Chen X, Chen X, Dong XC, Yin XM (2013) Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and nonalcoholic fatty liver conditions in mice. J Hepatol 58:993–999. Recent study on how pharmacological modulation of autophagy by inhibitors or stimulators can be an effective approach to reduce fatty liver and liver injury caused by alcohol or by high fat-diet induced nonalcoholic fatty liver

  80. Wu D, Cederabum AI Inhibition of autophagy promotes CYP2E1-dependent toxicity via elevated oxidative stress, mitochondrial dysfunction and activation of p38 and JNK MAPK. Redox Biol 1:552–565

  81. Wu D, Wang X, Zhou R, Yang L, Cederbaum AI (2012) Alcohol steatosis and cytotoxicity; the role of cytochrome P4502E1 and autophagy. Free Radic Biol Med 53:1346–1357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Seki E, Brenner DA, Karin M (2012) A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143:307–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Czaja MJ, Liu H, Wang Y (2003) Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP- signaling. Hepatology 37:1405–1413

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Minemoto Y, Lin A (2004) C-Jun N-terminal kinase 1 (JNK1) but not JNK2 is essential for TNFα-induced c-Jun kinase activation and apoptosis. Mol Cell Biol 24:10844–10856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Schattenberg JM, Singh R, Wang Y, Lefkowitch JH, Rigoli RM, Scherer MJ, Czaja MJ (2006) JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 43:163–172

    Article  CAS  PubMed  Google Scholar 

  87. Kodama Y, Kisseleva T, Iwaisako K, Miura K, Taura K, DeMinicis S, Osterreicher CH, Schnabl B, Seki E, Brenner DA (2009) c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology 137:1467–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Wang X, Wu D, Yang L, Cederbaum AI (2011) Hepatoxicity mediated by pyrazole (cytochrome P4502E1) plus tumor necrosis factor alpha treatment occurs in c-JUN N-terminal 2-/- but not in-c-JUN N-terminal kinase 1-/- mice. Hepatology 54:1753–1766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Barnes MA, Roychowdhury SC, Nagy L (2014) Innate immunity and cell death in alcoholic liver disease: role of cytochrome P4502E1. Redox Biol 2:929–935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Barnes MA, McMullen MR, Roychowdhury SC, Pisano SG, Liu X, Stavitsky AB, Bucalia R, Nagy L (2013) Macrophage migration inhibitory factor contributes to ethanol-induced liver injury by mediating cell injury, steatohepatitis and steatosis. Hepatology 57:1980–1991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Bai J, Cederbaum AI (2006) Overexpression of CYP2E1 in mitochondria sensitizes HepG2 cells to the toxicity caused by depletion of glutathione. J Biol Chem 281:5128–5136

    Article  CAS  PubMed  Google Scholar 

  92. Robin MA, Anandatheerthavarada NK, Biswas G, Sepuris NBV, Gordon DM, Pain D, Avadhani NG (2002) Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 277:40583–40593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Robin MA, Anandatheerthavarada HK, Fang JK, Cudie M, Otvosi L, Avadhani NG (2001) Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. J Biol Chem 276:24680–24690

    Article  CAS  PubMed  Google Scholar 

  94. Bansal S, Liu CP, Sepuri NB, Anandatheerthavarada HK, Selvaraj V, Hoek J, Milne GL, Guengerich FP, Avadhani NG (2010) Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments alcohol-mediated oxidative Stress. J Biol Chem 285:24609–24619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N (2008) Role of JNK translocation to mitochondria leading to inhibiton of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283:13565–13577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Clugston RD, Jiang H, Lee MX, Piantedosi R, Yuen JJ, Ramakrishnan R, Lewis MJ, Gottesman ME, Huang LS, Goldberg IJ, Berk PD, Blaner WS (2011) Altered hepatic lipid metabolism in C57Bl/6 mice fed alcohol. J Lipid Res 52:2012–2031

    Article  CAS  Google Scholar 

  97. Fernando H, Wiktorowicz JE, Soman KV, Kaphjalia BS, Khan MF, Shakeel-Ansari GA (2013) Liver proteomics in progressive alcoholic steatosis. Toxicol Appl Pharmacol 266:470–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Wang Y, Kou Y, Wang X, Cederbaum AI, Wang R (2014) Multifactorial comparative proteomic study of cytochrome P450 2E1 function in chronic alcohol administration. PLoS ONE 9:e92504

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Liu S, Yeh TH, Singh VP, Krauland L, Li H, Zhang P, Kharbanda K, Ritov V, Monga SP, Scott DK, Eagon PK, Behari J (2012) Beta-Catenin is essential for ethanol metabolism and protection againast alcohol-mediated liver steatosis in mice. Hepatology 55:931–940

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Nath B, Szabo G (2012) Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatology 55:622–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Wang X, Wu D, Yang L, Gan L, Cederbaum AI (2013) Cytochrome P4502E1 potentiates ethanol induction of hypoxia and HIF 1α in vivo. Free Radic Biol Med 63:175–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Venkatraman A, Shiva S, Wigley A, Ulasova E, Chhieng SM, Bailey SM, Darley-Usmar VM (2003) The role of iNOS in alcohol-dependent hepatotoxicty and mitochondrial dysfunction in mice. Hepatology 38:565–573

    Article  CAS  Google Scholar 

  103. McKim SE, Gabele E, Isayama F, Lambert JC, Tucker LM, Wheeler MD, Connor D, Mason RP, Doll MA, Hein DW, Arteel GE (2003) Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice. Gastroenterology 125:1834–1844

    Article  CAS  PubMed  Google Scholar 

  104. Song BJ, Abdelmageed MA, Henderson LE, Yoo SY, Wan J, Purohit V, Hardwick JP, Moon KH (2013) Increased nitrosative stess promotes mitochondrial dyfunction in alcoholic and nonalcoholic fatty liver diease. Oxid Med Cell Longev. doi:10.1155/2013/781050

    PubMed Central  PubMed  Google Scholar 

  105. Andringa KK, Udoh US, Landar A, Bailey SM (2014) Proteomic analysis of 4-hydroxynonenal modifed proteins in liver mitochondria from chronic ethanol-fed rats. Redox Biol 2:1038–1047

    Article  PubMed Central  CAS  Google Scholar 

  106. Song BJ, Akbar M, Abdelmegeed MA, Byun K, Lee B, Yoon SK, Hardwick JP (2014) Mitochondrial dysfunction and tissue injury by alcohol, fat, nonalcoholic substances, and patholgical conditions through post-translational protein modifications. Redox Biol 3:109–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. You M, Considine RV, Leone TC, Kelly D, Crabb DW (2005) Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology 42:568–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Yin H, Hu M, Liang X, Ajmo JM, Li X, Bataller R, Odena G, Stevens SM, You M (2014) Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 146:801–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Hu M, Yin H, Mitra MS, Liang X, Ajmo JM, Nadra K, Chrast R, Finck BN, You M (2013) Hepatic specific lipin-1 deficiency exacerbates experimental alcohol-induced steatohepatitis in mice. Hepatology 58:1953–1963

    Article  CAS  PubMed  Google Scholar 

  110. McMullen MR, Pritchard MT, Wang Q, Millward CA, Croninger CM, Nagy LE (2005) Early growth response-1 transcription factor is essential for ethanol-induced fatty liver injury in mice. Gastroenterology 128:2066–2076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Derdak Z, Villegas KA, Wands JR (2012) Early growth response-1 transcription factor promotes hepatic fibrosis and steatosis in long term ethanol-fed Long- Evans rats. Liver Int. 32:361–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Studies in the author’s lab were supported by Grants from the National Institute on Alcohol Abuse and Alcoholism, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur I. Cederbaum.

Additional information

This article is part of the Topical Collection on Cytokines That Affect Liver Fibrosis and Activation of Hepatic Myofibroblasts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cederbaum, A.I. CYP2E1- and TNFalpha/LPS-Induced Oxidative Stress and MAPK Signaling Pathways in Alcoholic Liver Disease. Curr Pathobiol Rep 3, 263–272 (2015). https://doi.org/10.1007/s40139-015-0092-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0092-0

Keywords

Navigation