Skip to main content
Log in

A note on stochastic Navier–Stokes equations with not regular multiplicative noise

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We consider the Navier–Stokes equations in \({\mathbb {R}}^d\) (\(d=2,3\)) with a stochastic forcing term which is white noise in time and coloured in space; the spatial covariance of the noise is not too regular, so Itô calculus cannot be applied in the space of finite energy vector fields. We prove existence of weak solutions for \(d=2,3\) and pathwise uniqueness for \(d=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baxendale, P.: Gaussian measures on function spaces. Am. J. Math. 98, 891–952 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer-Verlag, Berlin-New York (1976)

    Book  MATH  Google Scholar 

  3. Brzeźniak, Z.: On stochastic convolution in Banach spaces and applications. Stochast. Stochast. Rep. 61(3–4), 245–295 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brzeźniak, Z., Ga̧tarek, D.: Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. Stochast. Process. Appl. 84(2), 187–226 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Weak solutions of the stochastic Landau–Lifshitz–Gilbert equation. Appl. Math. Res. Express. AMRX 1, 1–33 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Brzeźniak, Z., Li, Y.: Asymptotic compactness and absorbing sets for 2D stochastic Navier–Stokes equations on some unbounded domains. Trans. Am. Math. Soc. 358(12), 5587–5629 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brzeźniak, Z., Motyl, E.: Existence of a martingale solution of the stochastic Navier–Stokes equations in unbounded 2D and 3D domains. J. Differ. Equ. 254(4), 1627–1685 (2013). corrected version

    Article  MathSciNet  MATH  Google Scholar 

  8. Brzeźniak, Z., Motyl, E.: Fractionally dissipated stochastic hydrodynamic-type equation, working title (in preparation)

  9. Brzeźniak, Z., Motyl, E., Ondreját, M.: Invariant measure for the stochastic Navier–Stokes equations in unbounded 2D domains. Ann. Prob. (2015, to appear). arXiv:1502.02637

  10. Brzeźniak, Z., Ondreját, M.: Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces. Ann. Probab. 41(3B), 1938–1977 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brzeźniak, Z., van Neerven, J.: Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43(2), 261–303 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  13. de Simon, L.: Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova 34, 205–223 (1964)

    MathSciNet  MATH  Google Scholar 

  14. Ferrario, B.: The Bénard problem with random perturbations: dissipativity and invariant measures. NoDEA Nonlinear Differ. Equ. Appl. 4(1), 101–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Flandoli, F., Ga̧tarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102(3), 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holly, K., Wiciak, M.: Compactness method applied to an abstract nonlinear parabolic equation. Selected problems of Mathematics. Cracow University of Technology, Cracow (1995)

    Google Scholar 

  17. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, Second edn. North-Holland Mathematical Library, no. 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo (1989)

  18. Jakubowski, A.: On the Skorokhod topology. Ann. Inst. H. Poincaré Probab. Stat. 22(3), 263–285 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Jakubowski, A.: The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42(1), 209–216 (1997); English trans. Theory Probab. Appl. 42(1) 167–174 (1998)

  20. Kato, T., Ponce, G.: Well posedness of the Euler and Navier–Stokes equations in the Lebesgues spaces \(L^p_s({\mathbb{R}}^2)\). Rev. Mat. Iberoam. 2(1–2), 73–88 (1986)

    Article  MathSciNet  Google Scholar 

  21. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  22. Maslowski, B., Seidler, J.: On sequentially weakly Feller solutions to SPDE’s. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10(2), 69–78 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Mikulevicius, R., Rozovskii, B.L.: Stochastic Navier–Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mikulevicius, R., Rozovskii, B.L.: Global \(L^2\)-solutions of stochastic Navier–Stokes equations. Ann. Probab. 33(1), 137–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York (1983)

    MATH  Google Scholar 

  26. Schmalfuss, B.: Qualitative properties for the stochastic Navier–Stokes equations. Nonlinear Anal. 28(9), 1545–1563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. van Neerven, J.: \(\gamma \)-radonifying operators—a survey. The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis. In: Proc. Centre Math. Appl. Austral. Nat. Univ., Vol. 44, pp. 1–61. Austral. Nat. Univ., Canberra (2010)

  28. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and its Applications, vol. 2. North-Holland Publishing Co, Amsterdam (1977)

    MATH  Google Scholar 

  29. Vishik, M.I., Fursikov, A.V.: Mathematical Problems of Statistical Hydromechanics. Mathematics and Its Applications, vol. 9. Springer, New York (1988)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Part of this research started while Z. Brzeźniak was visiting the Department of Mathematics of the University of Pavia and was partially supported by the GNAMPA-INDAM project “Regolarità e dissipazione in fluidodinamica” and the PRIN 2010–2011; he would like to thank the hospitality of the Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Ferrario.

Additional information

Dedicated to Professor Bolesław Szafirski on his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzeźniak, Z., Ferrario, B. A note on stochastic Navier–Stokes equations with not regular multiplicative noise. Stoch PDE: Anal Comp 5, 53–80 (2017). https://doi.org/10.1007/s40072-016-0081-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-016-0081-2

Keywords

Mathematics Subject Classification

Navigation