Skip to main content
Log in

Abstract

In this paper estimates for the \(L_\infty \)-norm of solutions of parabolic SPDEs are derived. The result is obtained through iteration techniques, motivated by the work of Moser in deterministic settings. As an application of the main result, solvability of a class of semilinear SPDEs is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dareiotis, K., Gyöngy, I.: A comparison principle for stochastic integro-differential equations. Potential Anal. 41(4), 1203–1222 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Debussche, A., De Moor, S., Hofmanova, M.: A regularity result for quasilinear stochastic partial differential equations of parabolic type. arxiv:1401.6369

  3. Denis, L., Matoussi, A., Stoica, L.: \(L^p\) estimates for the uniform norm of solutions of quasilinear SPDE’s. Probab. Theory Relat. Fields 133(4), 437–463 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. De Giorgi, E.: Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Math. Nat. 3, 25–43 (1957)

    Google Scholar 

  5. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’s Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics, p. xiv+278. Springer, New York (2012)

    Book  Google Scholar 

  6. Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gyöngy, I., Pardoux, E.: Weak and strong solutions of white noise driven parabolic SPDEs. Preprint No. 22/92, Laboratoire de Mathématiques Marseille, Université de Provence

  8. Hsu, E.P., Wang, Y., Wang, Z.: Stochastic De Giorgi Iteration and Regularity of Stochastic Partial Differential Equation. arXiv:1312.3311

  9. Kim, K.: \(L_p\)-Estimates for SPDE with discontinuous coefficients in domains. Electron. J. Probab. 10, 1–20 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Krylov, N.V.: An analytic approach to SPDEs, stochastic partial differential equations: six perspectives. AMS Math. Surv. Monogr. 64, 185–242 (1999)

  11. Krylov, N.V.: A relatively short proof of Itô’s formula for SPDEs and its applications. arXiv:1208.3709

  12. Krylov, N.V., Rozovskii, B.L.: Stochastic Evolution Equations [MR0570795]. Stochastic Differential Equations: Theory and Applications, 169, Interdiscip. Math. Sci., 2. World Sci. Publ., Hackensack, NJ (2007)

    Google Scholar 

  13. Krylov, N.V., Safonov, M. V.: A property of the solutions of parabolic equations with measurable coefficients. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 44(1), 161–175, 239 (1980)

  14. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. (Russian) Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, p. xi+648. American Mathematical Society, Providence, RI (1968)

  15. Moser, J.: On Harnack’s theorem for elliptic differential equations. Commun. Pure Appl. Math. 14, 577–591 (1961)

    Article  MATH  Google Scholar 

  16. Moser, J.: A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)

    Article  MATH  Google Scholar 

  17. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931954 (1958)

    Article  MathSciNet  Google Scholar 

  18. Prevôt, C., Röckner, M.: A concise course on stochastic partial differential equations. Lecture Notes in Mathematics, 1905, p. vi+144. Springer, Berlin, (2007)

  19. Qiu, J., Tang, S.: Maximum principle for quasi-linear backward stochastic partial differential equations. J. Funct. Anal. 262(5), 2436–2480 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften, vol. 293, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  21. Rozovskii, B.L.: Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering. Mathematics and its Applications (Soviet Series), vol. 35. Kluwer Academic Publishers Group, Dordrecht (1990)

    Google Scholar 

  22. Safonov, M. V.: Harnack’s inequality for elliptic equations and Hölder property of their solutions. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 12. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96, p. 272287, 312 (1980)

Download references

Acknowledgments

The authors would like to express their gratitude towards their PhD advisor, Professor István Gyöngy, for his help and support during the preparation of this paper. They are furthermore grateful to the anonymous referee for her/ his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Dareiotis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dareiotis, K., Gerencsér, M. On the boundedness of solutions of SPDEs. Stoch PDE: Anal Comp 3, 84–102 (2015). https://doi.org/10.1007/s40072-014-0043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-014-0043-5

Keywords

Mathematics Subject Classification

Navigation