Skip to main content
Log in

On the solvability of degenerate stochastic partial differential equations in Sobolev spaces

  • Published:
Stochastic Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

Systems of parabolic, possibly degenerate parabolic SPDEs are considered. Existence and uniqueness are established in Sobolev spaces. Similar results are obtained for a class of equations generalizing the deterministic first order symmetric hyperbolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brzeźniak, Z., Flandoli, F., Maurelli, M.: Existence and uniqueness for stochastic 2D Euler flows with bounded vorticity. arXiv:1401.5938

  2. Dalang, R.C.: Extending martingale measure stochastic integral, with applications to spatially homogeneous S.P.D.E’s. Electron. J. Probab. 4, 1–21 (1999)

    Article  MathSciNet  Google Scholar 

  3. Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for spde’s: a comparison. Expositiones Mathematicae 29, 67–109 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  5. Gerencsér, M., Gyöngy, I.: On stochastic finite difference schemes. Appl. Math. Opt. (2014). doi:10.1007/s00245-014-9272-2

  6. Gyöngy, I., Krylov, N.V.: On stochastic equations with respect to semimartingales I. Stochastics 4(1), 1–21 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gyöngy, I., Krylov, N.V.: Stochastic partial differential equations with unbounded coefficients and applications III. Stoch. Stoch. Rep. 40, 77–115 (1992)

    Article  MATH  Google Scholar 

  8. Gyöngy, I., Krylov, N.V.: On the rate of convergence of splitting-up approximations for SPDEs. In Progress in Probability, vol. 56, pp. 301–321. Birkhäuser, Berlin (2003)

  9. Gyöngy, I., Krylov, N.V.: Expansion of solutions of parametrized equations and acceleration of numerical methods. Ill. J. Math. 50, 473–514 (2006). Special Volume in Memory of Joseph Doob (1910–2004)

    MATH  Google Scholar 

  10. Gyöngy, I., Shmatkov, A.: Rate of convergence of Wong–Zakai approximations for stochastic partial differential equations. Appl. Math. Opt. 54(3), 315–341 (2006)

    Article  MATH  Google Scholar 

  11. Gyöngy, I.: An introduction to the theory of stochastic partial differential equations. In preparation

  12. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  13. Kim, K.: \(L_p\) estimates for SPDE with discontinuous coefficients in domains. Electron. J. Probab. 10, 1–20 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kim, K.: \(L_q(L_p)\)-theory of parabolic PDEs with variable coefficients. Bull. Korean Math. Soc. 45(1), 169–190 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kim, K., Lee, K.: A \(W^1_2\)-theory of stochastic partial differential systems of divergence type on \(C^1\) domains. Electron. J. Probab. 16, 1296–1317 (2011)

    MATH  MathSciNet  Google Scholar 

  16. Krylov, N.V.: On SPDE’s and superdiffusions. Ann. Probab. 25, 1789–1809 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krylov, N.V.: Stochastic Partial Differential Equations: Six Perspectives, Mathematical Surveys and Monographs. An analytic approach to SPDEs, pp. 185–242. American Mathematical Society, Providence, RI (1999)

    Book  Google Scholar 

  18. Krylov, N.V.: SPDEs in \(L_q((0,\tau ], L_p)\) spaces. Electron. J. Prob. 5(13), 1–29 (2000)

    Google Scholar 

  19. Krylov, N.V.: Itô’s formula for the \(L_p\)-norm of stochastic \(W_ p^1\)-valued processes. Probab. Theory Relat. Fields 147, 583–605 (2010)

    Article  MATH  Google Scholar 

  20. Krylov, N.V., Rozovskii, B.L.: On the Cauchy problem for linear stochastic partial differential equations. Math. USSR Izvestija 11(6), 1267–1284 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krylov, N.V., Rosovskii, B.L.: Stochastic evolution equations. J. Soviet Math. 16, 1233–1277 (1981)

    Article  MATH  Google Scholar 

  22. Krylov, N.V., Rozovskii, B.L.: Characteristics of degenerating second-order parabolic Itô equations. J. Soviet Maths. 32, 336–348 (1986). Translated from Trudy Seminara imeni I.G. Petrovskogo, No. 8. pp. 153–168, (1982)

    Article  MATH  Google Scholar 

  23. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  24. Molchanov, S.A., Ruzmaikin, A.A., Sokolov, D.D.: Short-correlated random flow as a fast dynamo. Dokl. Akad. Nauk SSSR 295(3), 576–579 (1987)

    MathSciNet  Google Scholar 

  25. Oleĭnik, O.A.: Alcuni risultati sulle equazioni lineari e quasi lineari ellittico-paraboliche a derivate parziali del secondo ordine. (Italian) Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 40(8), 775–784 (1966)

    Google Scholar 

  26. Oleĭnik, O.A.: On the smoothness of solutions of degenerating elliptic and parabolic equations. Dokl. Akad. Nauk SSSR 163, 577–580 (1965). in Russian; English translation in Soviet Mat. Dokl., Vol. 6, No. 3, 972–976 (1965)

    MathSciNet  Google Scholar 

  27. Oleĭnik, O.A., Radkevič, E.V.: Second order equations with nonnegative characteristic form, Mathematical Analysis, 1969, pp. 7–252. (errata insert) Akad. Nauk SSSR, Vsesojuzn. Inst. Naučn. i Tehn. Informacii, Moscow, : in Russian, p. 1973. Plenum Press, New York-London, English translation (1971)

  28. Olejnik, O.A., Radkevich, E.V.: Second Order Equations with Nonnegative Characteristic Form. AMS, Providence (1973)

    Book  Google Scholar 

  29. Rozovskii, B.L.: Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering. Kluwer, Dordrecht (1990)

    Google Scholar 

  30. Walsh, J.B.: An introduction to stochastic partial differential equations. d’Eté de Prob. de St-Flour XIV, 1984. Lecture Notes in Mathematics, vol. 1180. Springer, New York (1986)

Download references

Acknowledgments

The results of this paper were presented at the 9th International Meeting on “Stochastic Partial Differential Equations and Applications” in Levico Terme in Italy, in January, 2014, and at the meeting on “Stochastic Processes and Differential Equations in Infinite Dimensional Spaces” in King’s College London, in March, 2014. The authors would like to thank the organisers for these possibilities. The authors are grateful to the referee whose comments and suggestions helped to improve the presentation of the paper. The work of the third author was partially supported by NSF Grant DMS-1160569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Gyöngy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerencsér, M., Gyöngy, I. & Krylov, N. On the solvability of degenerate stochastic partial differential equations in Sobolev spaces. Stoch PDE: Anal Comp 3, 52–83 (2015). https://doi.org/10.1007/s40072-014-0042-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-014-0042-6

Keywords

Mathematics Subject Classification

Navigation