Skip to main content
Log in

A Method of Modeling Fabric Shear using Finite Element Analysis

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Fabric modeling may be attempted by modeling fibres or yarns or small fabric units. The first is computationally intensive while the third does not allow relationships between the fabric’s structure and its mechanical properties to be predicted. The second approach has been the most widely used so far. Out of the various ways in which this has been attempted, the finite element approach offers high flexibility while allowing the procedure to be relatively simple because of the availability of user-friendly softwares. This work explores a two-step finite element approach for modeling in-plane fabric shear. A major innovation of the modeling process was that the path of yarns in the fabric was allowed to evolve through the modeling process rather than being pre-defined. The relationship between shear angle and shear stress predicted by this model was compared with that obtained from a picture frame shear experiment. It was found that modeling the yarn with a set of anisotropic properties, gave very good correlation with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.T. Peirce, The geometry of cloth structure. J. Text. Inst. Trans. 28(3), T45 (1937)

    Article  Google Scholar 

  2. J.S.W. Hearle, H.M.A.E. El-Behery, V.M. Thakur, The mechanics of twisted yarns: tensile properties of continuous-filament yarns. J. Text. Inst. Trans. 50(1), T83 (1959)

    Article  Google Scholar 

  3. E. Onder, G. Baser, A comprehensive stress and breakage analysis of staple fiber yarns part I: stress analysis of a staple yarn based on a yarn geometry of conical helix fiber paths. Text. Res. J. 66(9), 562 (1996)

    Article  Google Scholar 

  4. M. Konopasek, Classical elastica theory and its generalizations, in Mechanics of Flexible Fibre Assemblies, Nato Advanced Study Institutes Series, Series E: Applied Science—No. 38, ed. by J.W.S. Hearle, J.J. Thwaites, J. Amirbaya (Sijthoff and Noordhoff, Pittsburgh, 1980), p. 255

    Chapter  Google Scholar 

  5. D.W. Lloyd, F. Mete, K. Hussain, An approach to the theoretical mechanics of static drape. Int. J. Cloth. Sci. Technol. 8(3), 43 (1996)

    Article  Google Scholar 

  6. D.M. Stump, W.B. Fraser, Asimpified model of fabric drape based on ring theory. Text. Res. J. 66(8), 506 (1996)

    Article  Google Scholar 

  7. J.R. Postle, R. Postle, Modeling fabric deformation as a nonlinear dynamical system using Bäcklund Transformations. Int. J. Cloth. Sci. Technol. 8(3), 22 (1996)

    Article  Google Scholar 

  8. A. Kemp, An extension of Peirce’s cloth geometry to the treatment of non-circular threads. J. Text. Inst. Trans. 49(1), T44 (1958)

    Article  MathSciNet  Google Scholar 

  9. S. Kawabata, M. Niwa, H. Kawai, The finite deformation theory of plain weave fabrics part I: the biaxial-deformation theory. J. Text. Inst. 64(1), 21 (1973)

    Article  Google Scholar 

  10. S. Kawabata, M. Niwa, H. Kawai, The finite deformation theory of plain weave fabrics part II: the uniaxial-deformation theory. J. Text. Inst. 64(2), 47 (1973)

    Article  Google Scholar 

  11. S. Kawabata, M. Niwa, H. Kawai, The finite deformation theory of plain weave fabrics part III: the shear-deformation theory. J. Text. Inst. 64(2), 62 (1973)

    Article  Google Scholar 

  12. D.E. Breen, D.H. House, P.H. Getto, A physically-based particle model of woven cloth. Vis. Comput. 8(5,6), 264 (1992)

    Article  Google Scholar 

  13. D.E. Breen, D.H. House, M.J. Wozny, A particle-based model for simulating the draping behavior of woven cloth. Text. Res. J. 64(11), 663 (1994)

    Article  Google Scholar 

  14. B.B. Boubaker, B. Haussy, J.F. Ganghoffer, Consideration of the yarn–yarn interactions in meso/macro discrete model of fabric. Part I: single yarn behavior. Mech. Res. Commun. 34(4), 359 (2007)

    Article  MATH  Google Scholar 

  15. B.B. Boubaker, B. Haussy, J.F. Ganghoffer, Consideration of the yarn–yarn interactions in meso/macro discrete model of fabric. Mech. Res. Commun. 34(4), 371 (2007)

    Article  MATH  Google Scholar 

  16. X. Provot, in Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. Proceedings of Graphics Interface’95 (Quebec, Canada, 1995), 17–19 May, p. 147

  17. E.M. Parsons, T. Weerasooriya, S. Sarva, S. Socrate, J. Mech. Phys. Solids 58(11), 1995 (2010)

    Article  MATH  Google Scholar 

  18. P. Boisse, M. Borr, K. Buet, A. Cherouat, Finite element simulations of textile composite forming including the biaxial fabric behavior. Compos. B Eng. 28(4), 453 (1997)

    Article  Google Scholar 

  19. J. Page, J. Wang, Prediction of shear force using 3D non-linear FEM analyses for plain weave carbon fabrics in a bias extension state. Finite Elem. Anal. Des. 38(8), 755 (2002)

    Article  MATH  Google Scholar 

  20. P. Badel, E. Vidal-Salle, P. Boisse, Computational determination of in-plane shear mechanical behaviour of textile composite reinforcements. Comput. Mater. Sci. 40(4), 439 (2007)

    Article  Google Scholar 

  21. N. Hamila, P. Boisse, S. Chatel, Finite element simulation of composite reinforcement draping using a three node semi discrete triangle. Int. J. Mater. Form. 1(S1), 867 (2008)

    Article  Google Scholar 

  22. D. Wang, Y. Jiao, J. Li, 3D geometrical model of plain weave fabrics for finite element analysis. Adv. Mater. Res. 332–334, 1635 (2011)

    Article  Google Scholar 

  23. P. Boisse, N. Hamila, E. Vidal-Salle, F. Dumont, Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos. Sci. Technol. 71(5), 683 (2011)

    Article  Google Scholar 

  24. H. Lin, M.J. Clifford, A.C. Long, K. Lee, N. Guo, A finite element approach to the modeling of fabric mechanics and its application to virtual fabric design and testing. J. Text. Inst. 103(10), 1063 (2012)

    Article  Google Scholar 

  25. G. Lebrun, M.N. Bureau, J. Denault, Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos. Struct. 61, 341 (2003)

    Article  Google Scholar 

  26. J.J. Lin, in Prediction of Elastic Properties of Plain Weave Fabric Using Geometrical Modeling, ed. by P.D. DubrovskiIn. Woven Fabric Engineering (2010), ISBN: 978-953-307-194-7, InTech

  27. J.W.S. Hearle, W.J. Shanahan, An energy method for calculations in fabric mechanics, part II: examples of application of the method to woven fabrics. J. Text. Inst. 69(4), 92–100 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Guha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chichani, S., Guha, A. A Method of Modeling Fabric Shear using Finite Element Analysis. J. Inst. Eng. India Ser. E 96, 1–7 (2015). https://doi.org/10.1007/s40034-014-0051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-014-0051-z

Keywords

Navigation