Skip to main content
Log in

Prediction of Yarn Strength Utilization in Cotton Woven Fabrics using Artificial Neural Network

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

The paper presents an endeavor to predict the percentage yarn strength utilization (% SU) in cotton woven fabrics using artificial neural network approach. Fabrics in plain, 2/2 twill, 3/1 twill and 4-end broken twill weaves having three pick densities and three weft counts in each weave have been considered. Different artificial neural network models, with different set of input parameters, have been explored. It has been found that % SU can be predicted fairly accurately by only five fabric parameters, namely the number of load bearing and transverse yarns per unit length, the yarn crimp % in the load bearing and transverse directions and the float length of the weave. Trend analysis of the artificial neural network model has also been carried out to see how the various parameters affect the % SU. The results indicate that while an increase in the number of load bearing or transverse yarns increases the % SU, an increase in the float length and the crimp % in the yarns have a detrimental effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

% SU :

Percentage strength utilization

ANN:

Artificial neural network

N e :

English count of the yarn

NL and NT :

Number of load bearing and transverse yarns per 2.5 cm in a sample

L and T:

Load bearing and transverse yarns

MAPE:

Mean Absolute Percentage Error

MSE:

Mean Squared Error

SL, ST :

Single yarn strength of load bearing and transverse yarns

CL, CT :

Crimp % in load bearing and transverse yarns

FL :

Float length of the weave

p L :

Spacing between load bearing yarns

VT :

Binding force of transverse yarns on the load bearing yarn

References

  1. F.T. Pierce, The geometry of cloth structure. J. Text. Inst. 28(3), T45–T96 (1937)

    Article  Google Scholar 

  2. A. Kemp, An extension of Peirce’s cloth geometry to the treatment of non-circular threads. J. Text. Inst. 49(1), T44–T48 (1958)

    Article  MathSciNet  Google Scholar 

  3. J.B. Hamilton, A general system of woven fabric geometry. J. Text. Inst. 55, 66 (1964)

    Article  Google Scholar 

  4. B. Olofsson, A general model of a fabric as a geometric mechanical structure. J. Text. Inst. 55(11), T541 (1964)

    Article  Google Scholar 

  5. G.A.V. Leaf, R.D. Anandjiwala, A generalized model of plain woven fabrics. Text. Res. J. 55, 92 (1985)

    Article  Google Scholar 

  6. R.D. Anandjiwala, G.A.V. Leaf, Large scale extension and recovery of plain woven fabrics, part-I: theoretical. Text. Res. J. 61, 619 (1991)

    Article  Google Scholar 

  7. R.D. Anandjiwala, G.A.V. Leaf, Large scale extension and recovery of plain woven fabrics. Part-II: experimental and discussion. Text. Res. J. 61(12), 743–755 (1991)

  8. S. Kawabata, M. Niwa, H. Kawai, The finite-deformation theory of plain weaves. Part II: the uniaxial-deformation theory. J. Text. Inst. 64(2), 47 (1973)

    Article  Google Scholar 

  9. S. Kawabata, M. Niwa, H. Kawai, The finite-deformation theory of plain weaves. Part I: the biaxial-deformation theory. J. Text. Inst. 64(2), 21 (1973)

    Article  Google Scholar 

  10. T.V. Sagar, P. Potluri, J.W.S. Hearle, Mesoscale modelling of interlaced fibre assemblies using energy method. Comput. Mater. Sci. 28, 49 (2003)

    Article  Google Scholar 

  11. A.A. Shahpurwala, P. Schwartz, Modeling woven fabric tensile strength using statistical bundle theory. Text. Res. J. 59, 26 (1989)

    Article  Google Scholar 

  12. G. Chen, X. Ding, Breaking progress simulation and strength prediction of woven fabric under uni-axial tensile loading. Text. Res. J. 76, 875 (2006)

    Article  Google Scholar 

  13. J. Fan, L.A. Hunter, Worsted fabric expert system. Part II: an artificial neural network model for predicting the properties of worsted fabrics. Text. Res. J. 68, 763 (1998)

    Article  Google Scholar 

  14. D. Bhattacharjee, V.K. Kothari, A neural network system for prediction of thermal resistance of textile fabrics. Text. Res. J. 77, 4 (2007)

    Article  Google Scholar 

  15. B.K. Behera, R. Mishra, Artificial neural network-based prediction of aesthetic and functional properties of worsted suiting fabrics. Int. J. Cloth. Sci. Technol. 19(5), 259 (2007)

    Article  Google Scholar 

  16. M. Zeydan, Modelling the woven fabric strength using artificial neural network and Taguchi methodologies. Int. J. Cloth. Sci. Technol. 20(2), 104 (2008)

    Article  Google Scholar 

  17. B.K. Behera, R. Guruprasad, Predicting bending rigidity of woven fabrics using artificial neural networks. Fibers Polymers 11(8), 1187 (2010)

    Article  Google Scholar 

  18. A. Majumdar, A. Ghosh, S.S. Saha, A. Roy, S. Barman, D. Panigrahi, A. Biswas, Empirical modelling of tensile strength of woven fabrics. Fibers Polymers 9(2), 240 (2008)

    Article  Google Scholar 

  19. D.P. Dobnik, M. Brezocnik, Prediction of the ultraviolet protection of cotton woven fabrics dyed with reactive dystuffs. Fibers Text. East. Eur. 17(72), 55 (2009)

  20. D.E. Rumelhart, G. Hinton, R.J. Williams, Learning Internal representations by error propagation, in Parallel Distributed Processing, vol 1, ed. by D.E. Rumelhart, J.L. McClelland (MIT Press, Cambridge, MA, 1986), p. 318

  21. S. Haykin, Neural networks: a comprehensive foundation, 2nd edn. (Pearson Education, Singapore, 2004), p. 161

    Google Scholar 

  22. A. Majumdar, Soft computing in fibrous materials engineering. Text. Progress 43(1), 1 (2011)

    Article  Google Scholar 

  23. S. Rajasekaran, G.A.V. Pai, Neural networks, fuzzy logic and genetic algorithms: synthesis and applications (Prentice-Hall of India Pvt. Ltd, New Delhi, 2003), p. 42

    Google Scholar 

  24. J.M. Zurada, Introduction to artificial neural systems (Jaico Publishing House, Mumbai, 2003), p. 175

    Google Scholar 

  25. P. Grosberg, The geometrical properties of plain cloths, in Structural Mechanics of Fibers, Yarns and Fabrics, vol. 1, ed. by J.W.S Hearle, P. Grosberg, S. Backer (Wiley Interscience, New York, 1969) p. 325

Download references

Acknowledgments

The author is thankful to Vardhaman Textiles Ltd., India for manufacturing of fabrics at C.P.D.C., Mahavir Spinning Mills—Textile Division Textiles, Baddi, H.P., India and Shahi Exports Pvt. Ltd. (Unit of Sarla Fabrics Ltd. Ghaziabad, U.P.), India for desizing and scouring of the fabrics in relaxed form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapna Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S. Prediction of Yarn Strength Utilization in Cotton Woven Fabrics using Artificial Neural Network. J. Inst. Eng. India Ser. E 96, 151–157 (2015). https://doi.org/10.1007/s40034-014-0049-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-014-0049-6

Keywords

Navigation