Skip to main content
Log in

Hydrodynamics of Flow Obstructed by Inline and Eccentrically-Arranged Circular Piers on a Horizontal Bed Surface

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Absract

An attempt has been made to study and analyse the hydrodynamic effects of turbulent flow including its pattern and characteristics around three identical circular shaped piers. Experimentation was conducted under clear-water scour condition. Three pier groups were placed with inline and eccentric arrangement in tandem manner on a flume. Two piers were positioned inline along the flow direction and third pier was placed eccentrically in the middle of two inline piers having a transverse distance equal to three times of pier width. Three dimensional velocities were gauged at a horizontal plane located at 4% depth above the zero bed level. The readings were captured in the Cartesian coordinate-system to compute the time-mean longitudinal, transversal and vertical velocities. The hydrodynamic consequences of three piers arrangement near the horizontal bed were investigated. The contour profile and variations of time aggregated mean velocity components, kinetic energy and turbulence intensities are measured or determined and analysed. Velocity vectors and absolute velocity at horizontal plane obtained from velocity measuring areas are utilised to explain further hydrodynamic flow features. The measured depth for scour at equilibrium state for the eccentric middle pier is observed higher than the inline front and inline rear circular piers. The three pier group positioning and the interfering between the circular piers act an important function in flow characteristics and for creating and forming the larger scoured depth around the eccentric middle pier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.N.C. Breusers, G. Nicollet, H.W. Shen, Local scour around cylindrical piers. J. Hydraul. Res. 15(3), 211–252 (1977)

    Article  Google Scholar 

  2. A.J. Raudkivi, R. Ettema, Clear water scour at cylindrical piers. J. Hydraul. Eng. 109(3), 338–350 (1983)

    Article  Google Scholar 

  3. S. Das, R. Das, A. Mazumdar, Variations of clear water scour geometry at piers of different effective widths. Turk. J. Eng. Environ. Sci. 38(1), 97–111 (2014)

    Article  Google Scholar 

  4. S. Das, R. Ghosh, R. Das, A. Mazumdar, Clear water scour geometry around circular piers. Ecol. Environ. Conserv. 20(2), 479–492 (2014)

    Google Scholar 

  5. S. Dey, Local scour at piers, part 1: A Review of development of research. Int. J. Sediment Res. 12(2), 23–44 (1997)

    Google Scholar 

  6. P. Khwairakpam, S.S. Ray, S. Das, R. Das, A. Mazumdar, Scour hole characteristics around a vertical pier under clear water scour conditions. ARPN J. Eng. Appl. Sci. 7(6), 649–654 (2012)

    Google Scholar 

  7. S. Das, R. Das, A. Mazumdar, Scour mechanism around piers at clear water equilibrium condition. Int. J. Adv. Eng. Res. Dev. 1(10), 88–94 (2014)

    Google Scholar 

  8. S. Das, R. Das, A. Mazumdar, Vorticity and circulation of horseshoe vortex in equilibrium scour holes at different piers. J. Inst. Eng. India Ser. A 95(2), 109–115 (2014)

    Article  Google Scholar 

  9. S. Dey, S.K. Bose, G.L.N. Sastry, Clear water scour at circular piers: A model. J. Hydraul. Eng. 121(12), 869–876 (1995)

    Article  Google Scholar 

  10. S. Dey, R.V. Raikar, Characteristics of horseshoe vortex in developing scour holes at piers. J. Hydraul. Eng. 133(4), 399–413 (2007)

    Article  Google Scholar 

  11. S. Das, S. Ghosh, A. Mazumdar, Flow field past a triangular pier due to sediment transportation at clear water equilibrium scour hole. Int. J. Emerg. Trends Eng. Dev. 7(2), 380–388 (2012)

    Google Scholar 

  12. B.W. Melville, A.J. Raudkivi, Flow characteristics in local scour at bridge piers. J. Hydraul. Res. 15(4), 373–380 (1977)

    Article  Google Scholar 

  13. S. Das, R. Das, A. Mazumdar, Vortex flow field past a cylinder under clear water scour regime, in Proceeding of International Conference on Applications of Fluid Engineering (CAFE-2012), Greater Noida, UP, India, (2012)

  14. S. Das, R. Das, A. Mazumdar, Circulation characteristics of horseshoe vortex in the scour region around circular piers. Water Sci. Eng. 6(1), 59–77 (2013)

    Google Scholar 

  15. R. Ettema, G. Kirkil, M. Muste, Similitude of large scale turbulence in experiments on local scour at cylinders. J. Hydraul. Eng. 132(1), 33–40 (2006)

    Article  Google Scholar 

  16. S. Das, R. Midya, R. Das, A. Mazumdar, A study of wake vortex in the scour region around a circular pier. Int. J. Fluid Mech. Res. 40(1), 42–59 (2013)

    Article  Google Scholar 

  17. S. Das, R. Das, A. Mazumdar, Comparison of characteristics of horseshoe vortex at circular and square piers. Res. J. Appl. Sci. Eng. Technol. 5(17), 4373–4387 (2013)

    Google Scholar 

  18. A. Roulund, B.M. Sumer, J. Fredsoe, J. Michelsen, Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Das, A. Mazumdar, Comparison of kinematics of horseshoe vortex at a flat plate and different shaped piers. Int. J. Fluid Mech. Res. 42(5), 418–448 (2015)

    Article  Google Scholar 

  20. S. Das, S. Thakurta, R. Das, A. Mazumdar, Turbulent flow field in clear water equilibrium scour hole at triangular pier. in International Symposium of Sustainable Infrastructure Development, Bhubaneswar: India, (2013), pp. 401–411

  21. H. Akilli, A. Akar, C. Karakus, Flow characteristics of circular cylinders arranged side-by-side in shallow water. Flow Meas. Instrum. 15(4), 187–189 (2004)

    Article  Google Scholar 

  22. D. Sumner, S.S.T. Wong, S.J. Price, M.P. Paidoussis, Fluid behavior of side-by-side circular cylinders in steady cross-flow. J. Fluids Struct. 13(3), 309–338 (1999)

    Article  Google Scholar 

  23. A.B. Ashtiani, A.A. Kordkandi, Flow field around single and tandem piers. Flow Turbul. Combust. 90(3), 471–490 (2013)

    Article  Google Scholar 

  24. S. Das, S. Ghosh, A. Mazumdar, Kinematics of horseshoe vortex in a scour hole around two eccentric triangular piers. Int. J. Fluid Mech. Res. 41(4), 296–317 (2014)

    Article  Google Scholar 

  25. S. Das, A. Mazumdar, Turbulence flow field around two eccentric circular piers in scour hole. Int. J. River Basin Manag. 13(3), 343–361 (2015)

    Article  Google Scholar 

  26. N. Solaimani, A. Amini, H. Banejad, P.T. Ghazvinei, The effect of pile spacing and arrangement on bed formation and scour hole dimensions in pile groups. Int. J. River Basin Manag. 15(2), 219–225 (2017)

    Article  Google Scholar 

  27. S. Das, R. Das, A. Mazumdar, Comparison of local scour characteristics around two eccentric piers of different shapes. Arab. J. Sci. Eng. 41(4), 1193–1213 (2016)

    Article  Google Scholar 

  28. A.V. Voskoboinick, V.A. Voskoboinick, A.A. Voskoboinick, Junction flow of three-row pile grillage on a flat plate. Part 1. Horseshoe vortex generation. Appl. Hydromech. 10(3), 28–39 (2008)

    Google Scholar 

  29. M.M. Zdravkovich, The effects of interference between circular cylinders in cross flow. J. Fluid. Struct. 1(2), 239–261 (1987)

    Article  Google Scholar 

  30. S.A. Michael, G.M. Mohamed, S.B.A.M. Mohamed, Wake vortex scour at bridge piers. J. Hydraul. Eng. 117(7), 891–904 (1991)

    Article  Google Scholar 

  31. S. Das, R. Das, A. Kuila, A. Mazumdar, Analysis of clear-water equilibrium scour around two eccentric circular piers to increase self dredging, in Seminar on Dredging: Equipment and Applications, (EADA), Kolkata, India, (2014)

  32. K.R. Elliott, C.J. Baker, Effect of pier spacing on scour around bridge piers. J. Hydraul. Eng. 111(7), 1105–1109 (1985)

    Article  Google Scholar 

  33. R. Das, P. Khwairakpam, S. Das, A. Mazumdar, Clear-water local scour around eccentric multiple piers to shift the line of sediment deposition. Asian J. Water Environ. Pollut. 11(3), 47–54 (2014)

    Google Scholar 

  34. A.S. NorTek, ADV Operational Manual (Vollen, Nortek AS, 1996)

    Google Scholar 

  35. S. Das, R. Das, A. Mazumdar, Velocity profile measurement technique for scour using ADV, in International Conference of Testing and Measurement: Techniques and Applications (TMTA), (Taylor & Francis Group, London, 2015), pp. 249–252

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaman, H., Das, S., Das, R. et al. Hydrodynamics of Flow Obstructed by Inline and Eccentrically-Arranged Circular Piers on a Horizontal Bed Surface. J. Inst. Eng. India Ser. A 98, 77–83 (2017). https://doi.org/10.1007/s40030-017-0187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-017-0187-1

Keywords

Navigation