Skip to main content
Log in

Discrimination of Tanzanian Black Tea by Geographical Origin and Seasonal Variations of Chemical constituents using HPTLC and NIR Spectroscopy

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

We present the results of a study that differentiated black tea by geographical origin using high-performance thin-layer chromatography (HPTLC) and near-infrared spectroscopy (NIRS). Quantitative measurements of important components (caffeine, chlorogenic acid, and L-theanine) are also reported. Classification and identification of black tea were performed using a combination of PCA and NIRS used for tea clustering.

The findings have shown that the differences in tea quality between the southern highlands (Katumba, Kibena, and Lugoda estates) and north-eastern zones (Herkulu, Kwamkoro, and Dindira estates) were related to caffeine, L-theanine, and Chlorogenic acid contents. HPTLC findings revealed higher content of caffeine (13.17 ± 0.47–21.30 ± 0.58 mg/g), chlorogenic acid (13.20 ± 0.46–19.7 ± 0.47 mg/g), and L-theanine (14.50 ± 0.47–19.20 ± 0.46 mg/g) in Southern highlands of Tanzania (Katumba, Kibena, and Lugoda estates) than caffeine (9.65 ± 0.15–13.57 ± 0.21 mg/g), Chlorogenic acid (0.25 ± 0.11–9.84 ± 0.14 mg/g), and L-theanine (5.88 ± 0.22–15.88 ± 0.51 mg/g) of the tea samples collected from the north-east of Tanzania (Herkulu, Kwamkoro, and Dindira estates). NIRS combined with principal component analysis (PCA) grouped tea samples into two-sided clusters those from southern highlands and those from the north-eastern zone with a total of 99% variations among origins. This method successfully discriminates black tea according to its geographical origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tan S-M (2012) Rapid and non-destructive discrimination of tea varieties by near infrared diffuse reflection spectroscopy coupled with classification and regression trees, African. J Biotechnol 11:2303–2312. https://doi.org/10.5897/ajb11.2648

    Article  CAS  Google Scholar 

  2. Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S (2015) Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2012.678949

    Article  PubMed  Google Scholar 

  3. H. Haenel, J. E. James (19920) Caffeine and Health. 432 Seiten. Academic Press, London, San Diego, New York u. a. Preis: 29,50 £; 59,95 $, Food/Nahrung. https://doi.org/10.1002/food.19920360453

  4. Tfouni SAV, Camara MM, Kamikata K, Gomes FML, Furlani RPZ (2018) Caffeine in teas: levels, transference to infusion and estimated intak. Food Sci Technol 38:661–666. https://doi.org/10.1590/1678-457x.12217

    Article  Google Scholar 

  5. Ying Y, Ho JW, Zhen YC, Wang J (2005) Analysis of theanine in tea leaves by HPLC with fluorescence detection. J Liq Chromatogr Relat Technol. https://doi.org/10.1081/JLC-200048894

    Article  Google Scholar 

  6. Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW (2014) Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res. https://doi.org/10.1007/s00011-013-0674-4

    Article  PubMed  Google Scholar 

  7. Tanui JK, Fang W, Feng W, Zhuang P, Li X (2012) World black tea markets: relationships and implications for the global tea industry. J Int Food Agribus Mark. https://doi.org/10.1080/08974438.2012.665791

    Article  Google Scholar 

  8. Zheng XQ, Li QS, Xiang LP, Liang YR (2016) Recent advances in volatiles of teas. Molecules 21:1–12. https://doi.org/10.3390/molecules21030338

    Article  CAS  Google Scholar 

  9. Zhao Y, Ma X, Fan L, Mao F, Tian H, Xu R, Cao Z, Zhang X, Fu X, Sui H (2017) Discrimination of geographical origin of cultivated Polygala tenuifolia based on multi-element fingerprinting by inductively coupled plasma mass spectrometry. Sci Rep 7:151–159. https://doi.org/10.1038/s41598-017-12933-z

    Article  CAS  Google Scholar 

  10. Meng W, Xu X, Cheng KK, Xu J, Shen G, Wu Z, Dong J (2017) Geographical origin discrimination of oolong tea (TieGuanYin, Camellia sinensis (L.) O. Kuntze) using proton nuclear magnetic resonance spectroscopy and near-infrared spectroscopy. Food Anal Methods. https://doi.org/10.1007/s12161-017-0920-4

    Article  Google Scholar 

  11. Mees C, Souard F, Delporte C, Deconinck E, Stoffelen P, Stévigny C, Kauffmann JM, De Braekeleer K (2018) Identification of coffee leaves using FT-NIR spectroscopy and SIMCA. Talanta 177:4–11. https://doi.org/10.1016/j.talanta.2017.09.056

    Article  CAS  PubMed  Google Scholar 

  12. Ning J, Sun J, Zhu X, Xuyu X, Zhang Z (2016) Identification of black tea from four countries by using near-infrared spectroscopy and support vector data description pattern recognition. Adv J Food Sci Technol 11:337–343. https://doi.org/10.19026/ajfst.11.2420

    Article  CAS  Google Scholar 

  13. Cimpoiu C (2006) Analysis of some natural antioxidants by thin-layer chromatography and high performance thin-layer chromatography. J Liq Chromatogr Relat Technol. https://doi.org/10.1080/10826070600574911

    Article  Google Scholar 

  14. Makowicz E, Jasicka-Misiak I, Teper D, Kafarski P (2018) HPTLC fingerprinting—Rapid method for the differentiation of honeys of different botanical origin based on the composition of the lipophilic fractions. Molecules 23(7):1811

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reich E, Schibli A, Widmer V, Jorns R, Wolfram E, DeBatt A (2006) HPTLC methods for identification of green tea and green tea extract. J Liq Chromatogr Relat Technol. https://doi.org/10.1080/15512160600760293

    Article  Google Scholar 

  16. Patel S, Sihmar S, Jatain A (2015) A study of hierarchical clustering algorithms. Int Conf Comput Sustain Glob Dev (INDIACom) 2015(3):537–541

    Google Scholar 

  17. Owuor PO, Obaga SO, Othieno CO (1990) The effects of altitude on the chemical composition of black tea. J Sci Food Agric. https://doi.org/10.1002/jsfa.2740500103

    Article  Google Scholar 

  18. Owuor PO, Obanda M, Nyirenda HE, Mandala WL (2008) Influence of region of production on clonal black tea chemical characteristics. Food Chem. https://doi.org/10.1016/j.foodchem.2007.09.017

    Article  Google Scholar 

  19. Athayde ML, Coelho GC, Schenkel EP (2000) Caffeine and theobromine in epicuticular wax of Ilex paraguariensis A. St.-Hil. Phytochemistry. https://doi.org/10.1016/S0031-9422(00)00324-1

    Article  PubMed  Google Scholar 

  20. Bidlack WR (2001) Green tea: health benefits and applications. J Am Coll Nutr. https://doi.org/10.1080/07315724.2001.10719164

    Article  Google Scholar 

  21. Chu DC (1997) Green tea-its cultivation, processing of the leaves for drinking materials, and kinds of green tea. Chem Appl Green Tea 1

  22. Mudau FN, Soundy P, Du Toit ES (2007) Effects of nitrogen, phosphorus, and potassium nutrition on total polyphenol content of bush tea (Athrixia phylicoides L.) leaves in shaded nursery environment. HortScience 2:3. https://doi.org/10.21273/hortsci.42.2.334

    Article  Google Scholar 

  23. Mudau FN, Soundy P, Toit du ES (2007) Nitrogen, phosphorus, and potassium nutrition increases growth and total polyphenol concentrations of bush tea in a shaded nursery environment. HortTechnology. https://doi.org/10.21273/horttech.17.1.107

    Article  Google Scholar 

  24. Tan S-M (2012) Rapid and non-destructive discrimination of tea varieties by near infrared diffuse reflection spectroscopy coupled with classification and regression trees. Afr J Biotechnol. https://doi.org/10.5897/ajb11.2648

    Article  Google Scholar 

  25. Rinnan Å, van den Berg F, Engelsen SB (2009) Review of the most common pre-processing techniques for near-infrared spectra, TrAC. Trends Anal Chem 28:1201–1222. https://doi.org/10.1016/j.trac.2009.07.007

    Article  CAS  Google Scholar 

  26. Sen AR, Biswas AK, Sanyal DK (1966) The influence of climatic factors on the yield of tea in the Assam valley. J Appl Meteorol. https://doi.org/10.1175/1520-0450(1966)005%3c0789:tiocfo%3e2.0.co;2

    Article  Google Scholar 

  27. Wang LY, Wei K, Jiang YW, Cheng H, Zhou J, He W, Zhang CC (2011) Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur Food Res Technol. https://doi.org/10.1007/s00217-011-1588-4

    Article  Google Scholar 

  28. Lee JE, Lee BJ, Chung JO, Hwang JA, Lee SJ, Lee CH, Hong YS (2010) Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a 1H NMR-based metabolomics study. J Agric Food Chem. https://doi.org/10.1021/jf102415m

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vuong QV, Bowyer MC, Roach PD (2011) L-Theanine: Properties, synthesis and isolation from tea. J Sci Food Agric. https://doi.org/10.1002/jsfa.4373

    Article  PubMed  Google Scholar 

  30. Ullah MR, Jain JC (1980) Seasonal variations in the chlorogenic acids content of tea. J Sci Food Agric. https://doi.org/10.1002/jsfa.2740310405

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Pharmaceutical Research and Development Laboratory at the School of Pharmacy (MUHAS) for supporting the laboratory experiments in which all experiments and analyzes were performed. Staffs Mr. P.T., Ms. R.N., Mr. E.L., Mr. T.M. Mr. MM. We would also like to thank the tea estates, Herkulu, Dindira, Lugoda, Kibena, Kwamkoro, and Katumba for their support of tea samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Shedafa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shedafa, R., Opel, C., Sempombe, J. et al. Discrimination of Tanzanian Black Tea by Geographical Origin and Seasonal Variations of Chemical constituents using HPTLC and NIR Spectroscopy. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 93, 925–933 (2023). https://doi.org/10.1007/s40011-023-01497-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-023-01497-w

Keywords

Navigation