Skip to main content
Log in

Characterisation and Validation of House Keeping Gene for Expression Analysis in Catla catla (Hamilton)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

A stable internal control gene or house keeping gene (HKG) is often used to normalise mRNA levels in different samples for expression analysis. In the present study, the authors identified and evaluated three HKGs, beta actin (β-actin), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and elongation factor 1 alpha (EF1α) for gene expression study in Catla (Catla catla). Gene expression levels were quantified by quantitative real-time reverse transcription polymerase chain reaction in different tissues (liver, kidney, intestine, gill, muscle and brain) and developmental stages (0, 3, 6, 12, 24 h, and 5, 7, 9 days post-fertilization). Expression stability was evaluated by comparing the coefficients of variation of the cycle threshold values and stability index. All the tested HKGs exhibited wide expression range. The results showed that β-actin is the most stable gene followed by the EF1α and GAPDH in different tissues whereas GAPDH was most stable gene followed by EF1α and β-actin during embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalization; strategies and considerations. Genes Immunol 6:279–284

    Article  CAS  Google Scholar 

  2. Yang CG, Wang XL, Tian J, Liu W, Wu F, Jiang M, Wen H (2013) Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus). Gene 527(1):183–192

    Article  CAS  PubMed  Google Scholar 

  3. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  4. Vandesompele J, Kubista M, Pfaffl MW (2009) Reference gene validation software for improved normalization. In: Logan J, Edwards K, Saunders N (eds) Real-Time PCR: current technology and applications. Caister Academic Press, London, pp 47–64

    Google Scholar 

  5. An L, Hu J, Yang M, Zheng B, Wei A, Shang J, Zhao X (2011) CYP1A mRNA expression in redeye mullets (Liza haematocheila) from Bohai Bay, China. Mar Pollut Bull 62(4):718–725

    Article  CAS  PubMed  Google Scholar 

  6. Szabo A, Perou CM, Karaca M, Perreard L, Quackenbush JF, Bernard PS (2004) Statistical modeling for selecting housekeeper genes. Genome Biol 5:R59

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344(1):141–143

    Article  CAS  PubMed  Google Scholar 

  8. Tang YK, Yu YH, Xu P, Li JL, Li HX, Ren HT (2012) Identification of housekeeping genes suitable for gene expression analysis in Jian carp (Cyprinus carpio var. jian). Fish Shellfish Immunol 33:775–779

    Article  CAS  PubMed  Google Scholar 

  9. Vandesompele J, Preter DK, Pattyn F, Poppe B, Roy VN, Paepe DA, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34

    Article  Google Scholar 

  10. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper-excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  11. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  12. Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    Article  PubMed Central  PubMed  Google Scholar 

  13. Jena JK (2014) Cultured aquatic species information programme: Catla catla. FAO Fisheries and Aquaculture Department [online], Rome. http://www.fao.org/fishery/culturedspecies/Catla_catla/en. Accessed 28 Aug 2014

  14. Uma A, Rebecca G, Saravanabava K (2012) In vivo effect of cpg oligodeoxynucleotides (CPG ODNS) on the expression of toll-like receptor9 (TLR9) in Catla catla. CIBtech J Biotechnol 1:17–21

    Google Scholar 

  15. Swain B, Samanta M, Basu M, Panda P, Sahoo BR, Maiti NK, Mishra BK, Eknath AE (2012) Molecular characterization, inductive expression and mechanism of interleukin-10 gene induction in the Indian major carp, catla (Catla catla). Aquac Res 43:897–907

    Article  CAS  Google Scholar 

  16. Rutledge RG, Cote C (2003) Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31(16):e93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9:59

    Article  PubMed Central  PubMed  Google Scholar 

  18. Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC, Waldbieser GC (2008) Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comp Biochem Physiol Part B 151:296–304

    Article  Google Scholar 

  19. Liu C, Xin N, Zhai Y, Jiang L, Zhai J, Zhang Q, Qi J (2014) Reference gene selection for quantitative real-time RT-PCR normalization in the half-smooth tongue sole (Cynoglossus semilaevis) at different DEVELOPMENTAL stages, in various tissue types and on exposure to chemicals. PLoS ONE 9(3):e91715

    Article  PubMed Central  PubMed  Google Scholar 

  20. Du Y, Zhang L, Xu F, Huang B, Zhang G, Li L (2013) Validation of housekeeping genes as internal controls for studying gene expression during Pacific oyster (Crassostrea gigas) development by quantitative real-time PCR. Fish Shellfish Immunol 34(3):939–945

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Yang L, Wang J, Shi W, Pawar RA, Liu Y, Xu C, Cong W, Hu Q, Lu T, Xia F, Guo W, Zhao M, Zhang Y (2010) Beta-Actin is a useful internal control for tissue specific gene expression studies using quantitative real-time PCR in the half-smooth tongue sole Cynoglossus semilaevis challenged with LPS or Vibrio anguillarum. Fish Shellfish Immunol 29:89–93

    Article  PubMed  Google Scholar 

  22. Dhar AK, Bowers RM, Licon KS, Veazey G, Read B (2009) Validation of reference genes for quantitative measurement of immune gene expression in shrimp. Mol Immunol 46:1688–1695

    Article  CAS  PubMed  Google Scholar 

  23. Su J, Zhang R, Dong J, Yang C (2011) Evaluation of internal control genes for qRT-PCR normalization in tissues and cell culture for antiviral studies of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 30(3):830–835

    Article  CAS  PubMed  Google Scholar 

  24. McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102

    Article  PubMed Central  PubMed  Google Scholar 

  25. Deloffre LA, Andrade A, Filipe AI, Canario AV (2012) Reference genes to quantify gene expression during oogenesis in a teleost fish. Gene 506(1):69–75

    Article  CAS  PubMed  Google Scholar 

  26. Olsvik PA, Lie KK, Jordal AE, Nilsen TO, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21

    Article  PubMed Central  PubMed  Google Scholar 

  27. Fernandes JM, Mommens M, Hagen Ø, Babiak I, Solberg C (2008) Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Physiol Part B 150(1):23–32

    Article  Google Scholar 

  28. Mitter K, Kotoulas G, Magoulas A, Mulero V, Sepulcre P, Figueras A, Novoa B, Sarropoulou E (2009) Evaluation of candidate reference genes for qPCR during ontogenesis and of immune-relevant tissues of European seabass (Dicentrarchus labrax). Comp Biochem Physiol Part B 153:340–347

    Article  Google Scholar 

  29. Casadei R, Pelleri MC, Vitale L, Facchin F, Lenzi L, Canaider S, Frabetti F (2011) Identification of housekeeping genes suitable for gene expression analysis in the zebrafish. Gene Expr Patterns 11(3):271–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Director, Central Institute of Fisheries Education, Mumbai, India for providing all the facilities for the present work. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivendra Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Supplementary material 2 (DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Pathakota, GB., Annam, PK. et al. Characterisation and Validation of House Keeping Gene for Expression Analysis in Catla catla (Hamilton). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 85, 993–1000 (2015). https://doi.org/10.1007/s40011-014-0482-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-014-0482-9

Keywords

Navigation