Skip to main content

Advertisement

Log in

Assessment of Geochemical Environment from Study of River Sediments in the Middle Stretch of River Ganga at Ghazipur, Buxar and Ballia area

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

In order to investigate geochemical environment of the river Ganga, the freshly deposited sediment samples were collected from Ghazipur, Buxar and Ballia urban centers in the pre-monsoon period (May, 2010). The river receives industrial as well as domestic wastes from various drains of above mentioned cities. River Ganga has been one of the major recipients of the industrial effluents in India. The present study assesses the current status of the distribution and concentration of seven heavy metals (Cr, Co, Ni, Cu, Zn, Cd and Pb) in the river sediment at the three urban centers. The total trace metal content in sediment samples were analyzed by atomic absorption spectrophotometer and obtained values were compared with different standard values. The heavy metal concentrations were recorded in the following ranges (mg/kg) Cr (113–230), Co (11–29), Ni (32–75), Cu (39–73), Zn (72–140), Cd (0.45–0.95) and Pb (15–27). Results show that the mean concentration of Cr, Cd, Zn, Cu and Co in sediment at all urban centers exceeded the average worldwide shale concentration. However the mean concentration of Ni and Co was lower than it. Metal enrichment factor (EFc) for all sampling stations was recorded between 0 and 3. The maximum EFc was 1.82 for Cr, 1.18 for Co, 0.87 for Ni, 1.33 for Cu, 1.15 for Zn, 2.43 for Cd and 1.05 for Pb. The exceptionally high EFc value was recorded for Cd at all sampling stations. High EFc value indicates that large amount of pollutants are added through anthropogenic sources. The percentage of anthropogenic and lithogenic values of heavy metal concentration indicates that Cd receives highest value of anthropogenic addition into stream and it is followed by Cr, Cu, Zn and Co. Geoaccumulation indices showed that sediment was uncontaminated to moderately contaminated and may adversely affect the fresh water ecology of the river. Toxicity reference value indicates that the river bed sediment is toxic to benthos organisms for most of the undertaken metals. The data generated may provide useful information to Governmental agencies to control the heavy metal pollution of the river Ganga sediment at these urban centers which may even be worst with the increasing population load in the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Marin A, Lopez-Gonzalvez A, Barbas C (2001) Development and validation of extraction methods for determination of Zinc and arsenic speciation in soils using focused ultrasound: application to heavy metal study in mud and soil. Anal Chim Acta 442(2):305–318

    Article  CAS  Google Scholar 

  2. Sundaray SK, Panda UC, Nayak BB, Bhatta D (2006) Multivariate statistical technique for the evaluation of spatial and temporal variation in water quality of Mahanadi river- estuarine system, India—a case study. Environ Geochem Health 28(4):317–330

    Article  PubMed  CAS  Google Scholar 

  3. Akoto O, Bruce TN, Darco G (2008) Heavy metal pollution profiles in streams serving the Owabi reservoir. Afr J Environ Sci Technol 2(11):354–359

    Google Scholar 

  4. Ahmad MK, Islam S, Rahman S, Haque MR, Islam MM (2010) Heavy metal in water, sediment and some fishes of Burhiganga river, Bangladesh. Int J Environ Res 4(2):321–332

    CAS  Google Scholar 

  5. Miller CV, Foster GD, Majedi BF (2003) Baseflow and stormflow metal fluxes from two small agricultural catchment in the coastal plain of Chesapeake Bay Basin, United States. Appl Geol 18(4):483–501

    Article  CAS  Google Scholar 

  6. Harikumar PS, Nasir UP, Mujeebu Rahman MP (2009) Distribution of heavy metal pollution in the core sediment of a tropical wetland system. Int J Environ Sci Technol 6(2):225–232

    CAS  Google Scholar 

  7. Dassenakis M, Scoullos M, Faufa E, Krasakopoulou E, Pavlidou A, Kloukiniotou M (1998) Effects of multiple source of pollution on a small Mediterranean river. Appl Geochem 13(2):197–211

    Article  CAS  Google Scholar 

  8. Adaikpoh EO, Nwajei GE, Ogala JE (2005) Heavy metals concentrations in coal and sediments from river Ekulu in Enugu, Coal City of Nigeria. J Appl Sci Environ Manage 9(3):5–8

    Google Scholar 

  9. Ansari AA, Singh IB, Tobschall HJ (2000) Role of monsoon rain on concentration and dispersal patterns of metal pollutants in sediments and soil of the Ganga Plain, India. Environ Geol 39:221–237

    Article  CAS  Google Scholar 

  10. Macklin MG, Brewer PA, Balteanu D, Coulthard TJ, Driga B, Howard A, Zaharia S (2003) The long-term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failure in Maramures County, upper Tisabasin, Romania. Appl Geochem 18(2):241–257

    Article  CAS  Google Scholar 

  11. Kraft C, Tumpling W, Zachmann DW (2006) The effects of mining in Northern Romania on the heavy metal distribution in sediments of the rivers Szamos and Tisza, Hungary. Acta Hydrochim Hydrobiol 34:257–264

    Article  CAS  Google Scholar 

  12. Singh M, Singh IB, Muller G (2007) Sediment characteristics and transportation dynamics of the Ganga River. Appl Geochem 20:1–21

    Article  Google Scholar 

  13. Venugopal T, Giridharan L, Jayprakash M, Velmurugan PM (2009) A comprehensive geochemical evaluation of the water quality of river Adyar, India. Bull Environ Contam Toxicol 82(2):211–217

    Article  PubMed  CAS  Google Scholar 

  14. Luoma SN (1983) Bioavailability of trace metals to aquatic organisms—a review. Sci Total Environ 28:1–22

    Article  PubMed  CAS  Google Scholar 

  15. Thornton JA, McComb AJ, Ryding SO (1975) The role of sediments. In: Mccomb AJ (ed) Eutrophic shallow estuaries and lagoons. CRC, Boca Raton, pp 205–223

    Google Scholar 

  16. Calmano W, Hong J, Forstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235

    CAS  Google Scholar 

  17. Dickinson WW, Dunbar GB, McLeod H (1996) Heavy metal history from cores in Wellington Harbour, New Zealand. Environ Geol 27:59–69

    Article  CAS  Google Scholar 

  18. Gibbs RL (1973) Mechanisms of trace metal transport in rivers. Science 214:441–443

    Google Scholar 

  19. Zoumis T, Schmidt A, Grigorova L, Calmano W (2001) Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ 266:195–202

    Article  PubMed  CAS  Google Scholar 

  20. Horowitz AJ (1991) A primer in sediment-trace element chemistry. Lewis, Chelsea

    Google Scholar 

  21. Forstner U, Wittmann GTW (1983) Metal pollution in the aquatic environment. Springer-Verlag, Berlin, p 481

    Google Scholar 

  22. Rao KL (1975) India’s water wealth. Orient Longman Limited, New Delhi 475 p

    Google Scholar 

  23. Ajmal M, Khan MA, Nomani AA (1983) Pollution in the river Ganges, India. Water Sci Technol 16:347–358

    Google Scholar 

  24. Prasad G, Ulabhaji AV, Mehrotra MN (1986) Some aspect of the pollution of the Ganga, near Rajghat, Varanasi (UP). J Inst Public Health Eng India 1:51–127

    Google Scholar 

  25. Sharma CB, Ghosh NC (1987) Pollution of the river Ganga by municipal waste: a case study from Patna. J Geol Soc India 30:369–385

    CAS  Google Scholar 

  26. Subramanian V, Sitaswad R, Abbas N, Jha PK (1987) Environmental geology of the Ganga river basin. J Geol Soc India 30:335–355

    CAS  Google Scholar 

  27. Mehrotra MN, Singh SN, Srivastava A, Singh KM (1991) Lead in bank sediment of Ganga and its role in water pollution. Bull Indian Geol Assoc 24(1):61–66

    Google Scholar 

  28. Kumar S (1992) Heavy metal in Ganga River sediments, Utter Pradesh: a preliminary report. In: Singh IB (ed) Gangatic plain: Terra Incognita. Geology Department, University of Lucknow, Lucknow, pp 59–66

    Google Scholar 

  29. Krishnaswami S, Trivedi JR, Sarin MM, Ramesh R, Sharma KK (1992) Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: weathering of the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic 87Sr/86Sr. Earth Planet Sci Lett 109:243–253

    Article  CAS  Google Scholar 

  30. Sarin MM, Krishnaswami S, Trivedi JR, Sharma KK (1992) Major ion chemistry of the Ganga source waters: weathering in the high altitude Himalaya. Proc Indian Acad Sci Earth Planet Sci 101:89–98

    CAS  Google Scholar 

  31. Datta DK, Subramanian V (1998) Distribution and Fraction of heavy metal in the surface sediment of the Ganges–Brahmaputra–Meghana river system in the Bengal basin. Environ Geol 36:93–101

    Article  CAS  Google Scholar 

  32. Bhatt KP, Saklani S (1996) Hydrogeochemistry of Upper Ganges River. India J Geol Soc India 48:171–182

    CAS  Google Scholar 

  33. Ansari AA (1997) Geochemical and Geo morphological Study of the Ganga plain, Kanpur-Unnao Industrial Region, India, Doctorate thesis, Universitat Erlangen-Nurnberg, Germany, p 188

  34. Ramesh R, Ramnathan AL, Ramesh S, Purvaja R, Subramanian V (2000) Distribution of rare earth element in the superficial sediment of the Himalaya river system. Geochem J 34:295–319

    Article  CAS  Google Scholar 

  35. Gaur RK, Khan AA, Alam A, Alam A (2000) Bacteriological quality of river Ganga from Narora to Kannauj: a comparative study. Indian J Environ Prot 20:165–170

    Google Scholar 

  36. Jain CK (2002) A Hydro-chemical study of mountainous watershed: The Ganga India. Water Res 36:1262–1272

    Article  PubMed  CAS  Google Scholar 

  37. Singh M, Muller G, Singh IB (2003) Geogenic distribution and baseline concentration of heavy metals in sediments of the Ganges River, India. J Geochem Explor 80:1–17

    Article  CAS  Google Scholar 

  38. Das Gupta SP (1984) The Ganga Basin: part-I. Central Board for Prevention and Control of Water Pollution, New Delhi, p 204

    Google Scholar 

  39. Raine SR (1998) Towards a fundamental understanding of soil aggregate breakdown under applied mechanical energies. In: Proceedings of the International Conference on Engineering in Agriculture 27–30 Sep. The University of Western Australia, Perth, Paper 98/010

  40. Edwards AP, Bremner JM (1967) Dispersion of soil particles by sonic vibrations. J Soil Sci 18:47–63

    Article  CAS  Google Scholar 

  41. Field DJ, Minasny B, Gaggin M (2006) Modeling aggregate liberation and dispersion of three soil types exposed to ultrasonic agitation. Aust J Soil Res 44:497–502

    Article  Google Scholar 

  42. Zhu ZL, Minasny B, Field DJ (2009) Measurement of aggregate bond energy using ultrasonic dispersion. Eur J Soil Sci 60:695–705

    Article  CAS  Google Scholar 

  43. Mentler A, Mayer H, Strauß P, Blum WEH (2004) Characterisation of soil aggregate stability by ultrasonic dispersion. Int Agrophys 18:39–45

    Google Scholar 

  44. Ruppert H (1987) Bestimmung von Schwermetallen im Boden sowie die ihr Verhalten beeinflussenden Bodneigenschaften, Bayerisches Landesamt. Beilage zum GLA-Fach-bericht 2:1–11

  45. Jackwerth E, Würfels M (1994) Der Druckaufschluß–Apparative Möglichkeiten, Probleme und Anwendungen’. In: Stoeppler M (ed) Probennahme und Aufschluß. Springer-Verlag, Berlin, pp 121–138

    Chapter  Google Scholar 

  46. Muller G (1971) Schwermetalle in den sedimenten des Rheins-Veranderungen seit. Umschau 79(24):778–783

    Google Scholar 

  47. Turekian KK, Wedepohl DH (1961) Distribution of the element in some major units of the earth’s crust. Bull Geol Soc Am 72:175–192

    Article  CAS  Google Scholar 

  48. Taylor SR (1964) Abundance of chemical element in the chemical element in the continental crust-A new table. Geochem Cosmochim Acta 28:1273–1285

    Article  CAS  Google Scholar 

  49. Berman SC, Shahu RK, Bhargava SK, Chatterjee C (2000) Distribution heavy metals in wheat, mustard and weed grown in fields irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–496

    Article  Google Scholar 

  50. Singh M, Muller G, Singh IB (2002) Heavy metals in freshly deposited river sediments associated with urbanization of the Ganga plain, India. Water Air Soil Pollut 141:35–54

    Article  CAS  Google Scholar 

  51. Jain CK, Ram D (1997) Adsorption of lead and zinc on bed sediments of the river Kali. Water Res 31(1):154–162

    Article  CAS  Google Scholar 

  52. Jain CK, Ram D (1997) Adsorption of metal ions on bed sediments. Hydrol Sci J 42(5):713–723

    Article  CAS  Google Scholar 

  53. Singh M (1996) The Ganga River: Fluvial Geomorphology, Sedimentation Processes and Geochemical Studies, vol 8. Beiträge zur Umwelt-Geologie Heidelberg, Heidelberg, p 141

    Google Scholar 

  54. USPHA (1997) Toxicological profile for zinc and lead on CD-ROM. Agency for Toxic Substances and Disease Registry. US Public Health Service, Atlanta

    Google Scholar 

  55. USEPA, 1999. National recommended water quality criteria-correction-United State Environmental Protection Agency EPA 822-Z-99-001; 25 pp. (http://www.epa.gov/ostwater/pci/revcom)

  56. Ecological Analysts Inc. (1981) The sources, chemistry, fate, and effects of chromium in aquatic environments. Avail. from American Petroleum Institute, 2101 L St., NW, Washington, DC 20037, 207pp

  57. Moore JW, Ramamoorthy S (1984) Heavy metals in natural waters: applied monitoring and impact assessment. Springer-Verlag, New York, pp 28–246

    Google Scholar 

  58. Centre for Ecological Sciences, IISc Environmental Hand-Book—Documentation on Monitoring and Evaluating Environmental Impacts, Compendium of Environmental Stan-dards, vol. 3, Indian Institute of Science, Bangalore, (2001) [Online].Available. http://wgbis.ces.iisc.ernet.in/energy/HC270799/HDL/ENV/START.HTM

  59. Pachpande BG, Ingle ST (2004) Recovery of the chromium by chemical precipitation from tannery effluent. Orient J Chem 20(1):117–123

    CAS  Google Scholar 

  60. The seventeenth session of the Governing Council of the United Nations Environment Programme (UNEP) was held at UNEP headquarters, Nairobi, from 10–21 May 1993

  61. Ajmal M, Khan MA, Nomani AA (1985) Distribution of heavy metals in plants and fishes of Yamuna river (India). Environ Monit Assess 5:361–367

    Article  CAS  Google Scholar 

  62. Gaur VK, Gupta SK, Pandey SD, Gopal K, Misra V (2005) Distribution of heavy metals in sediment and water of river Gomti. Environ Monit Assess 102:419–433

    Article  PubMed  CAS  Google Scholar 

  63. Mehra A, Farago ME, Banerjee DK (2000) A Study of Eichhornia Crassipes growing in the overbank and floodplain soils of the river Yamuna in Delhi, India. Environ Monit Assess 60:25–45

    Article  CAS  Google Scholar 

  64. Karabassi AR, Monavari SM, Nabi Bhidendi GR, Nuori J, Nematpour K (2008) Metal pollution assessment and water in the Shur river. Environ Monit Assess 147(1–3):107–116

    Article  Google Scholar 

  65. Atgin RS, El-Agha O, Zararsiz A, Kocatas A, Parlak H, Tuncel G (2000) Investigation of the sediment pollution in Izmir bay: trace element. Spectrochim Acta Part B 55(7):1151–1164

    Article  Google Scholar 

  66. Know YT, Lee CW, Ahn BY (2001) Sedimentation pattern and sediment bioavailability in a waste water discharging area by sequential metal analysis. Microchem J 68(2–3):135–141

    Google Scholar 

  67. Calaldo D, Colombo JC, Boltovskoy D, Bilos C, Landoni P (2001) Environment toxicity assessment in the Parana river delta (Argentina): simultaneous evaluation of selected pollutant and mortality rates of Corbicula Fluminea (Bivalvia) early juveniles. Environ Pollut 112(3):379–389

    Article  Google Scholar 

  68. Hobbelen PHF, Koolhaas JE, van Gestel CAM (2004) Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account. Environ Pollut 129(3):409–419

    Article  PubMed  CAS  Google Scholar 

  69. Okafor EC, Opuene K (2007) Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int J Environ Sci Technol 4(2):233–240

    CAS  Google Scholar 

  70. Mohiuddin KM, Zakir HM, Otomo K, Sharmin S, Shikazono N (2010) Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Int J Environ Sci Technol 7(1):17–28

    CAS  Google Scholar 

  71. Canadian Environmental Quality Guidelines (CEQG) (2002) Canadian sediment quality guidelines for the protection of aquatic life. Summary Tables. Canadian Council of Ministers of the Environment, 1999, updated 2001, updated 2002. http://www.ccme.ca/assets/pdf/sedqg_summary_table.pdf

  72. Mohiuddin KM, Ogawa Y, Zakir HM, Otomo K, Shikazono N (2011) Heavy metals contamination in water and sediments of an urban river in a developing country. Int J Environ Sci Technol 8(4):723–736

    CAS  Google Scholar 

  73. Jones DS, Suter GW, Hull RN (1997). Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1997 Revision. Oak Ridge National Laboratory. ES/ER/TM-95/R4, Oak Ridge National Laboratory, Oak Ridge

  74. Martin JM, Meybeck M (1979) Elemental mass balance of material carried by major world rivers. Mar Chem 7:173–206

    Article  CAS  Google Scholar 

  75. Smith SL, MacDonald DD, Keenleyside KA, Ingersoll CG, Field J (1996) A preliminary evaluation of sediment quality assessment values for fresh water ecosystem. J Gt Lakes Res 22:624–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank University Grant Commission (UGC), New Delhi for financial assistance, Prof. M. C. Chattopadhyay, Department of Chemistry, University of Allahabad for help in heavy metal analysis and Prof. G.K. Srivastava, Department of Botany, University of Allahabad for technical guidance in manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harendra Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H., Yadav, S., Singh, B.K. et al. Assessment of Geochemical Environment from Study of River Sediments in the Middle Stretch of River Ganga at Ghazipur, Buxar and Ballia area. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 371–384 (2013). https://doi.org/10.1007/s40011-012-0134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0134-x

Keywords

Navigation