Skip to main content
Log in

Production of Alkalophilic Xylanases by Paenibacillus polymyxa CKWX1 Isolated from Decomposing Wood

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Alkalophilic Paenibacillus polymyxa CKWX1, capable of producing xylanase was isolated from Dendrocalamus strictus decomposing wood samples. High level of xylanase produced by using easily available inexpensive agricultural waste residues as substrates such as wheat straw supported maximal xylanase activity, (1.41 IU/mL) followed by apple pomace, (1.22 IU/mL), Bombax ceiba wood dust, (0.64 IU/mL), Eucalyptus sp. wood dust (0.56 IU/mL) and Pinus roxburghii wood dust (0.33 IU/mL). The decomposing wood may provide excellent source for isolation of xylanolytic bacteria because of their varied physical and chemical conditions. The optimum pH and temperature for growth of this organism was 7.0–9.0 and 30–40 °C, respectively. On optimization of cultural conditions viz. 1.0 % inoculum size containing 80 × 108 colony forming unit (CFU)/mL, 1.0 % wheat straw, pH 7.0, temperature 35 °C, yeast extract 1.0 %, Tween 20 0.05 %, xylanase activity was increased by 2.6 folds. The novel alkaline xylanase was produced efficiently by alkalophilic P. polymyxa CKWX1. These results indicate the potential of P. polymyxa CKWX1 xylanase to be useful in pulp and paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Christakopoulos PK, Marcis BJ, Claeyssens M, Bhat K (1996) Purification and characterisation of a major xylanase with cellulose and transferase activities from Fusarium oxysporium. Carbohydr Res 289:91–104

    Article  PubMed  CAS  Google Scholar 

  2. Selle PH, Ravindran V, Partridge GG (2009) Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility, energy utilization, mineral retention and growth performance in wheat-based broiler diets. Anim Feed Sci Technol 153(3–4):303–313

    Article  CAS  Google Scholar 

  3. Rifaat HM, Nagieb ZA, Ahmed YM (2005) Production of xylanases by Streptomyces species and their bleaching effect on rice straw pulp. Appl Ecol Environ Res 4:151–160

    Google Scholar 

  4. Kim JH, Kim SC, Nam SW (2000) Constitutive overexpression of the endoxylanase gene in Bacillus subtilis. J Microbiol Biotechnol 10:551–553

    CAS  Google Scholar 

  5. Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-1,4-β-xylanases and endo-1,4-β-glucanase. Anal Biochem 144:142–146

    Article  PubMed  CAS  Google Scholar 

  6. Collins T, Gerday C, Feller G (2005) Xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  7. Annamalai N, Thavasi R, Jayalakshmi S, Balasubramanian T (2009) Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated from marine environment. IJBT 8:291–297

    CAS  Google Scholar 

  8. Pajni S, Dhillon N, Vadhera DV, Sharma P (1989) Carboxymethyl cellulose, β-glucosidase and xylanase production of Bacillus isolates from soil. Int Biodeter 25:1–5

    Article  CAS  Google Scholar 

  9. Shandilya TR (1989) Paddy straw compost formulation for growing button mushroom and its comparison with traditionally made compost based on wheat straw and chicken manure. Mushroom Sci 12:333–344

    Google Scholar 

  10. Walia A, Mehta P, Chauhan A, Shirkot CK (2012) Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Ann Microbiol. doi:10.1007/s13213-012-0460-5

    Google Scholar 

  11. Murty MVS, Chandra TS (1997) Fermentability of hemicelluloses extracted from municipal waste and commercial xylans of Clostridium sp. Appl Microbiol Biotechnol 147:212–217

    Article  Google Scholar 

  12. Biswas R, Sahai V, Mishra S, Bisaria V (2010) Bioprocess strategies for enhanced production of xylanase by Melanocarpus albomyces IITD3A on agro-residual extract. J Biosci Bioeng 110(6):702–708

    Article  PubMed  CAS  Google Scholar 

  13. Maheshwari R, Bhardwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  PubMed  CAS  Google Scholar 

  14. Bose RG (1968) A modified cellulosic medium for the isolation of cellulolytic fungi from infected material and soil. Appl Microbiol 16(2):419–420

    Google Scholar 

  15. Subba Rao NS (1995) Biofertilizers in agriculture and forestry, 3rd edn. Oxford and IBH Publishing Co, New Delhi, p 223

    Google Scholar 

  16. Teather RM, Wood PJ (1982) Use of congo-red polysaccharide interactions on enumeration and characterization of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43:777–780

    PubMed  CAS  Google Scholar 

  17. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  18. Gomez KA, Gomez AA (1976) Statistical procedures for agricultural research, 2nd edn. John Wiley and Sons, Singapore

    Google Scholar 

  19. Lacey J (1973) Actinomycetes in soils, composts and fodders. In: G Skyes, FA Skinner (eds) Actinomycetes: characteristics and practical importance. Society for Appl Bacteriol Symposium series No. 2, UK, Academic press, pp 231–251

  20. Haack SK, Breznak JA (1993) Cytophaga xylanolytica sp. nov., a xylan-degrading, anaerobic gliding bacterium. Arch Microbiol 59:6–15

    Article  Google Scholar 

  21. Claus D, Barkeley RCW (1986) Genus Bacillus cohn 1872, 174. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore MD, pp 1105–1139

    Google Scholar 

  22. Gomes J, Purkarthofer H, Hayn M, Kapplmuller J, Sinner M, Steiner W (1993) Production of a high level of cellulase free xylanase by the thermophilic fungus Thermomyces lanuginosus in laboratory and pilot scale using lignocellulosic materials. Appl Microbiol Biotechnol 39:700–707

    Article  CAS  Google Scholar 

  23. Da Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe. Braz J Microbiol 36(3):235–241

    Article  Google Scholar 

  24. Berenger JF, Frixon C, Biglearde J, Creuzet N (1985) Production, purification and properties of thermostable xylanases of Clostridium stercorarium. Can J Microbiol 31:635–643

    Article  CAS  Google Scholar 

  25. Archana A, Satyanarayana T (1997) Xylanase production by thermophilic Bacillus licheniformis A 99 in solid state fermentation. Enzyme Microb Technol 21:12–17

    Article  CAS  Google Scholar 

  26. Waino M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles 7:87–93

    PubMed  CAS  Google Scholar 

  27. Topkas E, Katapodis P, Kekos D, Macris BJ, Christakopoulos P (2003) Production and partial characterization of xylanase by Sporotrichum thermophile under solid state fermentation. World J Microbiol Technol 19:195–198

    Article  Google Scholar 

  28. Biely P, Vrsanska M, Kratky Z (1980) Xylan-degrading enzymes of the yeast Cryptococcus albidus: identification and cellular localization. Eur J Biochem 108:313–321

    Article  PubMed  CAS  Google Scholar 

  29. Bhatt AK, Bhalla TC, Agrawal HO, Sharma N (1994) Characterisation of xylanolytic activity of Flavobacterium sp. isolated from forest soil. Ind. J Microbiol 34(2):119–123

    Google Scholar 

  30. Battan B, Sharma J, Kuhad RC (2006) High-level xylanase production by alkaliphilic Bacillus pumilus ASH under solid state fermentation. World J Microbiol Biotechnol 22:1281–1287

    Article  CAS  Google Scholar 

  31. Sindhu I, Chibber S, Caplash N, Sharma P (2006) Production of cellulase free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp. Curr Microbiol 53:167–172

    Article  PubMed  CAS  Google Scholar 

  32. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus craft pulp. Enzyme Microb Technol 27:459–466

    Article  PubMed  CAS  Google Scholar 

  33. Prakash S, Veeranagouda Y, Kyoung L, Sreeramulu K (2009) Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J Microbiol Biotechnol 25:197–204

    Article  CAS  Google Scholar 

  34. Bakshi A, Mehta V, Gupta JK (1991) Constitutive extracellular expression of β-glucosidase by Streptomyces griseus. Ind J Microbiol 31(2):201–203

    Google Scholar 

  35. Karni M, Deopurkar RL, Rale VB (1993) Β-xylanase production by Aureobasidium pullulans grown on sugars and agricultural residues. World J Microbiol Biotechnol 9:476–478

    Article  CAS  Google Scholar 

  36. Gessesse A, Mamo G (1999) High-level xylanase production by an alkaliphilic Bacillus sp. by using solid state fermentation. Enzyme Microb Technol 25:68–72

    Article  CAS  Google Scholar 

  37. Liu J, Yuan X, Zeng G, Shi J, Chen S (2006) Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem 41(11):2347–2351

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Shirkot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walia, A., Mehta, P., Chauhan, A. et al. Production of Alkalophilic Xylanases by Paenibacillus polymyxa CKWX1 Isolated from Decomposing Wood. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 215–223 (2013). https://doi.org/10.1007/s40011-012-0122-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0122-1

Keywords

Navigation