Skip to main content

Advertisement

Log in

Pharmaceutical perspectives of impaired wound healing in diabetic foot ulcer

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Treatment for diabetic foot ulcer (DFU) remains as one of the biggest clinical concerns in diabetic disease. DFU often causes a prolonged treatment and eventually leads to a non-healing wound ulcer. An impaired foot ulcer is often associated with a high number of amputation cases in diabetes patients. Owing to progress in the scientific research on DFU, better understanding of the mechanisms, pathophysiology of DFU has provided an insight into the advanced treatment of DFU. This includes the use of bioactive compounds and tissue engineering approach for the regeneration of damaged cells. Despite the availability of various wound treatments and dressing products in the market, most of the current products have drawbacks and limitations in terms of the pharmaceutics perspectives. Hence, pitfalls and challenges remain to develop an effective medicinal treatment product for DFU. In this paper, we discuss the current treatments available and the promising bioactive compounds for DFU. We also review advanced treatments for DFU and their limitations from the pharmaceutical point of views.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah KM, Luthra G, Bilski JJ et al (1999) Cell-to-cell communication and expression of gap junctional proteins in human diabetic and nondiabetic skin fibroblasts. Endocrine 10(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Akasaka Y, Ono I, Tominaga A et al (2007) Basic fibroblast growth factor in an artificial dermis promotes apoptosis and inhibits expression of α-smooth muscle actin, leading to reduction of wound contraction. Wound Repair Regen 15(3):378–389

    Article  PubMed  Google Scholar 

  • Altavilla D, Bitto A, Polito F et al (2009) Polydeoxyribonucleotide (PDRN): a safe approach to induce therapeutic angiogenesis in peripheral artery occlusive disease and in diabetic foot ulcers. Cardiovascular & Hematological Agents in Medicinal Chemistry 7(4):313–321

    Article  CAS  Google Scholar 

  • Andree C, Swain WF, Page CP et al (1994) In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci 91(25):12188–12192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews KL, Houdek MT, Kiemele LJ (2015) Wound management of chronic diabetic foot ulcers: from the basics to regenerative medicine. Prosthet Orthot Int 39(1):29–39

    Article  PubMed  Google Scholar 

  • Armstrong DG, Lavery LA, Bushman TR (1998) Peak foot pressures influence the healing time of diabetic foot ulcers treated with total contact casts. J Rehabil Res Dev 35(1):1

    CAS  PubMed  Google Scholar 

  • Armstrong DG, Wrobel J, Robbins JM (2007) Guest editorial: are diabetes-related wounds and amputations worse than cancer. Int Wound J 4(4):286–287

    Article  PubMed  Google Scholar 

  • Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow–derived cells. Arch Dermatol 139(4):510–516

    Article  PubMed  Google Scholar 

  • Balingit PP, Armstrong DG, Reyzelman AM et al (2012) NorLeu3-A (1–7) stimulation of diabetic foot ulcer healing: results of a randomized, parallel-group, double-blind, placebo-controlled phase 2 clinical trial. Wound Repair and Regeneration 20(4):482–490

    PubMed  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16(5):585–601

    Article  PubMed  Google Scholar 

  • Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22(5):569–578

    Article  PubMed  PubMed Central  Google Scholar 

  • Becaplermin Regranex Gel (2012) Smith and Nephew Inc (www.regranex.com)

  • Berlanga J, Fernández JI, López E et al (2013) Heberprot-P: a novel product for treating advanced diabetic foot ulcer. MEDICC Rev 15(1):11–15

    Article  PubMed  Google Scholar 

  • Bitar MS, Labbad ZN (1996) Transforming growth factor-β and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. J Surg Res 61(1):113–119

    Article  CAS  PubMed  Google Scholar 

  • Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci 104(11):3653–3680

    Article  CAS  PubMed  Google Scholar 

  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  CAS  PubMed  Google Scholar 

  • Borena BM, Martens A, Broeckx SY et al (2015) Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem 36(1):1–23

    Article  CAS  PubMed  Google Scholar 

  • Brantley JN, Verla TD (2015) Use of placental membranes for the treatment of chronic diabetic foot ulcers. Adv Wound Care 4(9):545–559

    Article  Google Scholar 

  • Brown RL, Breeden MP, Greenhalgh DG (1994) PDGF and TGF-α act synergistically to improve wound healing in the genetically diabetic mouse. J Surg Res 56(6):562–570

    Article  CAS  PubMed  Google Scholar 

  • Chan RK, Garfein E, Gigante PR et al (2007) Side population hematopoietic stem cells promote wound healing in diabetic mice. Plast Reconstr Surg 120(2):407–411

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Tredget EE, Wu PY, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Xu Y, Zhao J et al (2014) Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One 9(4):e96161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi JS, Kim JD, Yoon HS, Cho YW (2012) Full-thickness skin wound healing using human placenta-derived extracellular matrix containing bioactive molecules. Tissue Eng Part A 19(3–4):329–339

    PubMed  PubMed Central  Google Scholar 

  • Christina I Guenter LK, Shibashish Giri, Hans-Günther Machens, and Augustinus Bader (2015) First results on the three patients treated with topical recombinant human erythropoietin (rhEPO) to improve wound healing in diabetic foot ulcers. J Transplant Stem Cells Biol 2(1):4

  • Cohen S (1965) The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol 12(3):394–407

    Article  CAS  PubMed  Google Scholar 

  • Demidova-Rice TN, Hamblin MR, Herman IM (2012) Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 25(7):304

    Article  PubMed  PubMed Central  Google Scholar 

  • Driver VR, Fabbi M, Lavery LA, Gibbons G (2010) The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg 52(3):17S–22S

    Article  PubMed  Google Scholar 

  • DuBose JW, Cutshall C, Metters AT (2005) Controlled release of tethered molecules via engineered hydrogel degradation: model development and validation. J Biomed Mater Res Part A 74(1):104–116

    Article  CAS  Google Scholar 

  • Dubský M, Jirkovská A, Bem R et al (2013) Risk factors for recurrence of diabetic foot ulcers: prospective follow-up analysis in the Eurodiale subgroup. Int Wound J 10(5):555–561

    Article  PubMed  Google Scholar 

  • Eaglstein WH, Falanga V (1997) Tissue engineering and the development of Apligraf®, a human skin equivalent. Clin Ther 19(5):894–905

    Article  CAS  PubMed  Google Scholar 

  • Edmonds M (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 8(1):11–18

    Article  PubMed  Google Scholar 

  • Embil JM, Papp K, Sibbald G et al (2000) Recombinant human platelet-derived growth factor-BB (becaplermin) for healing chronic lower extremity diabetic ulcers: an open-label clinical evaluation of efficacy. Wound Repair Regen 8(3):162–168

    Article  CAS  PubMed  Google Scholar 

  • Ertugrul BM, Buke C, Ersoy OS, Ay B, Demirez DS, Savk O (2015) Intralesional epidermal growth factor for diabetic foot wounds: the first cases in Turkey. Diabetic Foot Ankle. doi:10.3402/dfa.v6.28419

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Montequín JI, Infante-Cristiá E, Valenzuela-Silva C et al (2007) Intralesional injections of Citoprot-P®(recombinant human epidermal growth factor) in advanced diabetic foot ulcers with risk of amputation. Int Wound J 4(4):333–343

    PubMed  Google Scholar 

  • Fernández-Montequín JI, Betancourt BY, Leyva-Gonzalez G et al (2009) Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: treatment up to complete wound closure. Int Wound J 6(1):67–72

    Article  PubMed  Google Scholar 

  • Fife CE, Carter MJ (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: data from the US wound registry. Wounds 24(1):10–17

    PubMed  Google Scholar 

  • Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582

    Article  Google Scholar 

  • Futrega K, King M, Lott WB, Doran MR (2014) Treating the whole not the hole: necessary coupling of technologies for diabetic foot ulcer treatment. Trends Mol Med 20(3):137–142

    Article  PubMed  Google Scholar 

  • Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomed Nanotechnol Biol Med 11(6):1551–1573

    Article  CAS  Google Scholar 

  • Galeano M, Altavilla D, Cucinotta D et al (2004) Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53(9):2509–2517

    Article  CAS  PubMed  Google Scholar 

  • Galeano M, Bitto A, Altavilla D et al (2008) Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse. Wound Repair Regen 16(2):208–217

    Article  PubMed  Google Scholar 

  • Galiano RD, Tepper OM, Pelo CR et al (2004) Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am J Pathol 164(6):1935–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons GW (2015) Grafix®, a cryopreserved placental membrane, for the treatment of chronic/stalled wounds. Adv Wound Care 4(9):534–544

    Article  Google Scholar 

  • Gordois A, Scuffham P, Shearer A, Oglesby A, Tobian JA (2003) The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care 26(6):1790–1795

    Article  PubMed  Google Scholar 

  • Gottrup F, Apelqvist J (2012) Present and new techniques and devices in the treatment of DFU: a critical review of evidence. Diabetes Metabolism Res Rev 28(S1):64–71

    Article  Google Scholar 

  • Gregg EW, Sorlie P, Paulose-Ram R et al (2004) Prevalence of lower-extremity disease in the US adult population ≥40 years of age with and without diabetes 1999–2000 National Health and Nutrition Examination Survey. Diabetes Care 27(7):1591–1597

    Article  PubMed  Google Scholar 

  • Grek CL, Prasad G, Viswanathan V, Armstrong DG, Gourdie RG, Ghatnekar GS (2015) Topical administration of a connexin43-based peptide augments healing of chronic neuropathic diabetic foot ulcers: a multicenter, randomized trial. Wound Repair Regen 23(2):203–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103(2):137–149

    Article  CAS  PubMed  Google Scholar 

  • Günter C, Machens H-G (2012) New strategies in clinical care of skin wound healing. Eur Surg Res 49(1):16–23

    Article  PubMed  CAS  Google Scholar 

  • Günter CI, Bader A, Dornseifer U et al (2013) A multi-center study on the regenerative effects of erythropoietin in burn and scalding injuries: study protocol for a randomized controlled trial. Trials 14(1):124

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamed S, Bennett CL, Demiot C, Ullmann Y, Teot L, Desmouliere A (2014) Erythropoietin, a novel repurposed drug: an innovative treatment for wound healing in patients with diabetes mellitus. Wound Repair Regen 22(1):23–33

    Article  PubMed  Google Scholar 

  • Hanft J, Pollak R, Barbul A et al (2008) Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J Wound Care 17(1):34–37

    Article  Google Scholar 

  • Heberprot (2013) (http://heberprot-p.cigb.edu.cu/)

  • Heublein H, Bader A, Giri S (2015) Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds. Drug Discov Today 20(6):703–717

    Article  PubMed  Google Scholar 

  • Higuchi T (1961) Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50(10):874–875

    Article  CAS  PubMed  Google Scholar 

  • Hong JP, Jung HD, Kim YW (2006) Recombinant human epidermal growth factor (EGF) to enhance healing for diabetic foot ulcers. Ann Plast Surg 56(4):394–398

    Article  CAS  PubMed  Google Scholar 

  • International Best Practice GWM, in Diabetic Foot Ulcers. (2013) Wounds Int

  • Jayaraman P, Nathan P, Vasanthan P, Musa S, Govindasamy V (2013) Stem cells conditioned medium: a new approach to skin wound healing management. Cell Biol Int 37(10):1122–1128

    Article  PubMed  Google Scholar 

  • Kato J, Kamiya H, Himeno T et al (2014) Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complicat 28(5):588–595

    Article  PubMed  Google Scholar 

  • Kim NA, Lim DG, Lim JY et al (2014) Evaluation of protein formulation and its viscosity with DSC, DLS, and microviscometer. J Pharmaceut Investig 44(4):309–316

    Article  CAS  Google Scholar 

  • Koob TJ, Rennert R, Zabek N et al (2013) Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J 10(5):493–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob TJ, Lim JJ, Massee M, Zabek N, Denoziere G (2014) Properties of dehydrated human amnion/chorion composite grafts: implications for wound repair and soft tissue regeneration. J Biomed Mater Res B Appl Biomater 102(6):1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15(1):25–35

    Article  CAS  Google Scholar 

  • Krupski WC, Reilly LM, Perez S, Moss KM, Crombleholme PA, Rapp JH (1991) A prospective randomized trial of autologous platelet-derived wound healing factors for treatment of chronic nonhealing wounds: a preliminary report. J Vasc Surg 14(4):526–536

    Article  CAS  PubMed  Google Scholar 

  • Kusumanto Y, Van Weel V, Mulder N et al (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691

    Article  CAS  PubMed  Google Scholar 

  • Kwon DS, Gao X, Liu YB et al (2008) Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J 5(3):453–463

    Article  PubMed  Google Scholar 

  • Lavery LA, Vela SA, Lavery DC, Quebedeaux TL (1996) Reducing dynamic foot pressures in high-risk diabetic subjects with foot ulcerations: a comparison of treatments. Diabetes Care 19(8):818–821

    Article  CAS  PubMed  Google Scholar 

  • Lavery LA, Fulmer J, Shebetka KA et al (2014) The efficacy and safety of Grafix® for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J 11(5):554–560

    Article  PubMed  Google Scholar 

  • Lee PI, Kim C-J (1991) Probing the mechanisms of drug release from hydrogels. J Controll Release 16(1–2):229–236

    Article  CAS  Google Scholar 

  • Li M, Zhao Y, Hao H et al (2015) Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int J Low Extrem Wounds 14(1):73–86. doi:10.1177/1534734615569053

    Article  CAS  PubMed  Google Scholar 

  • Luckett L, Gallucci R (2007) Interleukin-6 (IL-6) modulates migration and matrix metalloproteinase function in dermal fibroblasts from IL-6KO mice. Br J Dermatol 156(6):1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Cheng W, He W et al (2010) Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound repair and regeneration 18(5):506–513

    Article  PubMed  Google Scholar 

  • Maderal AD, Vivas AC, Eaglstein WH, Kirsner RS (2012) The FDA and designing clinical trials for chronic cutaneous ulcers. In: Seminars in cell & developmental biology, vol 23. Elsevier, p 993–999

  • Marston WA, Hanft J, Norwood P, Pollak R (2003) The efficacy and safety of dermagraft in improving the healing of chronic diabetic foot ulcers results of a prospective randomized trial. Diabetes Care 26(6):1701–1705

    Article  PubMed  Google Scholar 

  • Massee M, Chinn K, Lei J, Lim JJ, Young CS, Koob TJ (2015) Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro. J Biomed Mater Res B

  • Midwood KS, Williams LV, Schwarzbauer JE (2004) Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 36(6):1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Mohan VK (2007) Recombinant human epidermal growth factor (REGEN-D™ 150): effect on healing of diabetic foot ulcers. Diabetes Res Clin Pract 78(3):405–411

    Article  CAS  PubMed  Google Scholar 

  • Mola EL (2012) Heberprot-P®: an idea turned into a product. Biotecnología Aplicada 29(4):262–265

    Google Scholar 

  • Moore K, Ghatnekar G, Gourdie RG, Potts JD (2014) Impact of the controlled release of a connexin 43 peptide on corneal wound closure in an STZ model of type I diabetes. PLoS One 9(1):e86570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mostow EN, Haraway GD, Dalsing M, Hodde JP, King D, Group OVUS (2005) Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg 41(5):837–843

    Article  PubMed  Google Scholar 

  • Moura LI, Dias AM, Carvalho E, de Sousa HC (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater 9(7):7093–7114

    Article  CAS  PubMed  Google Scholar 

  • Myerson M, Papa J, Eaton K, Wilson K (1992) The total-contact cast for management of neuropathic plantar ulceration of the foot. J Bone Joint Surg Am 74(2):261–269

    CAS  PubMed  Google Scholar 

  • Okabe K, Hayashi R, Aramaki-Hattori N, Sakamoto Y, Kishi K (2013) Wound treatment using growth factors

  • Okumura M, Okuda T, Okamoto T, Nakamura T, Yajima M (1996) Enhanced angiogenesis and granulation tissue formation by basic fibroblast growth factor in healing-impaired animals. Arzneimittelforschung 46(10):1021–1026

    CAS  PubMed  Google Scholar 

  • Organogenesis (2013) DERMAGRAFT Directions for use (www.organogenesis.com)

  • Papanas D, Maltezos E (2010) Benefit-risk assessment of becaplermin in the treatment of diabetic foot ulcers. Drug Saf 33(6):455–461

    Article  CAS  PubMed  Google Scholar 

  • Park M-H, Baek J-S, Lee C-A, Kim D-C, Cho C-W (2014) The effect of Eudragit type on BSA-loaded PLGA nanoparticles. J Pharmaceut Investig 44(5):339–349

    Article  CAS  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first International workshop on placenta derived stem cells. Stem Cells 26(2):300–311

    Article  PubMed  Google Scholar 

  • Raghow R (1994) The role of extracellular matrix in postinflammatory wound healing and fibrosis. FASEB J 8(11):823–831

    CAS  PubMed  Google Scholar 

  • Rees RS, Robson MC, Smiell JM, Perry BH (1999) Becaplermin gel in the treatment of pressure ulcers: a phase II randomized, double-blind, placebo-controlled study. Wound Repair Regen 7(3):141–147

    Article  CAS  PubMed  Google Scholar 

  • Rice JB, Desai U, Cummings AKG, Birnbaum HG, Skornicki M, Parsons NB (2014) Burden of diabetic foot ulcers for medicare and private insurers. Diabetes Care 37(3):651–658

    Article  PubMed  Google Scholar 

  • Richard J-L, Parer-Richard C, Daures J-P et al (1995) Effect of topical basic fibroblast growth factor on the healing of chronic diabetic neuropathic ulcer of the foot: a pilot, randomized, double-blind, placebo-controlled study. Diabetes Care 18(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Robson MC, Phillips LG, Lawrence WT et al (1992) The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores. Ann Surg 216(4):401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers K, Abiko M, Girgis W, St Amand K, Campeau J, Dizerega G (1997) Acceleration of dermal tissue repair by angiotensin II. Wound Repair Regen 5(2):175–183

    Article  CAS  PubMed  Google Scholar 

  • Rodgers K, Ellefson D, Espinoza T et al (2005) Fragments of Nle3-angiotensin (1–7) accelerate healing in dermal models. J Peptide Res 66(s1):41–47

    Google Scholar 

  • Rodgers KE, Bolton LL, Verco S, diZerega GS (2015) NorLeu3-Angiotensin (1–7)[DSC127] as a Therapy for the Healing of Diabetic Foot Ulcers. Adv Wound Care 4(6):339–345

    Article  Google Scholar 

  • Saaristo A, Tammela T, Fārkkilā A et al (2006) Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 169(3):1080–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    Article  CAS  PubMed  Google Scholar 

  • Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 17(2):153–162

    Article  PubMed  Google Scholar 

  • Shen C, Lie P, Miao T et al (2015) Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep 12(1):20–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S-H, Ye M-K, Kim H-S, Kang H-S (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7(13):1813–1818

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Agrawal NK, Gupta SK, Sinha P, Singh K (2016) Increased expression of TLR9 associated with pro-inflammatory S100A8 and IL-8 in diabetic wounds could lead to unresolved inflammation in type 2 diabetes mellitus (T2DM) cases with impaired wound healing. J Diabetes Complications 30(1):99–108

    Article  PubMed  Google Scholar 

  • Sini P, Denti A, Cattarini G, Daglio M, Tira M, Balduini C (1999) Effect of polydeoxyribonucleotides on human fibroblasts in primary culture. Cell Biochem Funct 17(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Smiell JM, Wieman TJ, Steed DL, Perry BH, Sampson AR, Schwab BH (1999) Efficacy and safety of becaplermin (recombinant human platelet-derived growth factor-BB) in patients with nonhealing, lower extremity diabetic ulcers: a combined analysis of four randomized studies. Wound Repair Regen 7(5):335–346

    Article  CAS  PubMed  Google Scholar 

  • Squadrito F, Bitto A, Altavilla D et al (2014) The effect of PDRN, an adenosine receptor A2A agonist, on the healing of chronic diabetic foot ulcers: results of a clinical trial. J Clin Endocrinol Metab 99(5):E746–E753

    Article  CAS  PubMed  Google Scholar 

  • Steed DL (2006) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg 117(7S):143S–149S

    Article  CAS  PubMed  Google Scholar 

  • Stockl K, Vanderplas A, Tafesse E, Chang E (2004) Costs of lower-extremity ulcers among patients with diabetes. Diabetes Care 27(9):2129–2134

    Article  PubMed  Google Scholar 

  • Strodtbeck F (2001) Physiology of wound healing. Newborn Infant Nurs Rev 1(1):43–52

    Article  Google Scholar 

  • Sun W, Sun W, Lin H et al (2007) Collagen membranes loaded with collagen-binding human PDGF-BB accelerate wound healing in a rabbit dermal ischemic ulcer model. Growth Factors 25(5):309–318

    Article  PubMed  CAS  Google Scholar 

  • Szlachcic A, Zakrzewska M, Otlewski J (2011) Longer action means better drug: tuning up protein therapeutics. Biotechnol Adv 29(4):436–441

    Article  CAS  PubMed  Google Scholar 

  • Tark K-C, Hong J-W, Kim Y-S, Hahn S-B, Lee W-J, Lew D-H (2010) Effects of human cord blood mesenchymal stem cells on cutaneous wound healing in leprdb mice. Ann Plast Surg 65(6):565–572

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wong KK, Ho CM et al (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2(1):129–136

    Article  CAS  PubMed  Google Scholar 

  • Tsang MW, Wong WKR, Hung CS et al (2003) Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care 26(6):1856–1861

    Article  CAS  PubMed  Google Scholar 

  • Tseng SC, Espana EM, Kawakita T et al (2004) How does amniotic membrane work? The Ocular Surface 2(3):177–187

    Article  PubMed  Google Scholar 

  • Tuyet HL, Quynh N, Tran T et al (2009) The efficacy and safety of epidermal growth factor in treatment of diabetic foot ulcers: the preliminary results. Int Wound J 6(2):159–166

    Article  PubMed  Google Scholar 

  • Uchi H, Igarashi A, Urabe K et al (2009) Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer. Eur J Dermatol 19(5):461–468

    PubMed  Google Scholar 

  • Walter M, Wright KT, Fuller H, MacNeil S, Johnson WEB (2010) Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays. Exp Cell Res 316(7):1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Wang CM, Lincoln J, Cook JE, Becker DL (2007) Abnormal connexin expression underlies delayed wound healing in diabetic skin. Diabetes 56(11):2809–2817

    Article  CAS  PubMed  Google Scholar 

  • Weiman T, Smiell J, Yachin S (1998) Efficacy and safety of a topical gel formulation of rh-PDGF-BB/becaplermin in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo-controlled double-blind study. Diabetes Care 21:822–827

    Article  Google Scholar 

  • Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83(3):835–870

    CAS  PubMed  Google Scholar 

  • Yan X, Chen B, Lin Y et al (2010) Acceleration of diabetic wound healing by collagen-binding vascular endothelial growth factor in diabetic rat model. Diabetes Res Clin Pract 90(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Yazdanpanah L, Nasiri M, Adarvishi S (2015) Literature review on the management of diabetic foot ulcer. World J diabetes 6(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  • Yew T-L, Hung Y-T, Li H-Y et al (2011) Enhancement of wound healing by human multipotent stromal cell conditioned medium: the paracrine factors and p38 MAPK activation. Cell Transplant 20(5):693–706

    Article  PubMed  Google Scholar 

  • Zaulyanov L, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2(1):93

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziyadeh N, Fife D, Walker AM, Wilkinson GS, Seeger JD (2011) A matched cohort study of the risk of cancer in users of becaplermin. Adv Skin Wound Care 24(1):31–39

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Trade, Industry and Energy (10047890) in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aeri Kim.

Ethics declarations

Conflict of interest

The authors (Aeri Kim, H.-C. Lau) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, HC., Kim, A. Pharmaceutical perspectives of impaired wound healing in diabetic foot ulcer. Journal of Pharmaceutical Investigation 46, 403–423 (2016). https://doi.org/10.1007/s40005-016-0268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0268-6

Keywords

Navigation