Skip to main content
Log in

Stellenwert und Einsatz von mAk bei neurologischen Erkrankungen

Monoklonale Antikörper

  • Fortbildung
  • Published:
DNP - Der Neurologe und Psychiater Aims and scope

Seit der Jahrtausendwende erfahren die Therapieregime in der Neurologie einen zunehmenden Wandel von vormals krankheitsspezifischer hin zu einer individualisierten Behandlung unter Berücksichtigung spezifischer Patienten- und Krankheitsmerkmale. Einen großen Anteil daran hat, wie es zuerst auf dem Gebiet der Onkologie zu beobachten war, die Entwicklung von Medikamenten, die sich von körpereigenen Molekülen ableiten, den „Biologicals“ zum Beispiel in Form von synthetischen monoklonalen Antikörpern (mAk).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495–497.

    Article  CAS  PubMed  Google Scholar 

  2. Buttmann M, Rieckmann P. Treating multiple sclerosis with monoclonal antibodies. Expert review of neurotherapeutics 2008;8:433–455.

    Article  CAS  PubMed  Google Scholar 

  3. Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA, Jr. Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. The Journal of experimental medicine 1993;177:57–68.

    Article  CAS  PubMed  Google Scholar 

  4. Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. The New England journal of medicine 2006;354:911–923.

    Article  CAS  PubMed  Google Scholar 

  5. Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. The New England journal of medicine 2006;354:899–910.

    Article  CAS  PubMed  Google Scholar 

  6. Derfuss T, Kuhle J, Lindberg R, Kappos L. Natalizumab therapy for multiple sclerosis. Seminars in neurology 2013;33:26–36.

    Article  PubMed  Google Scholar 

  7. Bloomgren G, Richman S, Hotermans C, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. The New England journal of medicine 2012;366:1870–1880.

    Article  CAS  PubMed  Google Scholar 

  8. Trebst C, Jarius S, Berthele A, et al. Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). Journal of neurology 2014;261:1–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cox AL, Thompson SA, Jones JL, et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. European journal of immunology 2005;35:3332–3342.

    Article  CAS  PubMed  Google Scholar 

  10. Coles AJ, Compston DA, Selmaj KW, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. The New England journal of medicine 2008;359:1786–1801.

    Article  PubMed  Google Scholar 

  11. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet 2012;380:1819–1828.

    Article  CAS  PubMed  Google Scholar 

  12. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 2012;380:1829–1839.

    Article  CAS  PubMed  Google Scholar 

  13. Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Annals of neurology 2010;67:452–461.

    Article  CAS  PubMed  Google Scholar 

  14. Morris PG, Correa DD, Yahalom J, et al. Rituximab, methotrexate, procarbazine, and vincristine followed by consolidation reduced-dose whole-brain radiotherapy and cytarabine in newly diagnosed primary CNS lymphoma: final results and long-term outcome. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2013;31:3971–3979.

    Article  CAS  Google Scholar 

  15. Fritsch K, Kasenda B, Hader C, et al. Immunochemotherapy with rituximab, methotrexate, procarbazine, and lomustine for primary CNS lymphoma (PCNSL) in the elderly. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO 2011;22:2080–2085.

    Article  CAS  Google Scholar 

  16. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. The New England journal of medicine 2008;358:676–688.

    Article  CAS  PubMed  Google Scholar 

  17. Hawker K, O’Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Annals of neurology 2009;66:460–471.

    Article  CAS  PubMed  Google Scholar 

  18. Leger JM, Viala K, Nicolas G, et al. Placebo-controlled trial of rituximab in IgM anti-myelin-associated glycoprotein neuropathy. Neurology 2013;80:2217–2225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Benedetti L, Briani C, Franciotta D, et al. Long-term effect of rituximab in anti-mag polyneuropathy. Neurology 2008;71:1742–1744.

    Article  CAS  PubMed  Google Scholar 

  20. Dalakas MC, Rakocevic G, Salajegheh M, et al. Placebo-controlled trial of rituximab in IgM anti-myelin-associated glycoprotein antibody demyelinating neuropathy. Annals of neurology 2009;65:286–293.

    Article  CAS  PubMed  Google Scholar 

  21. Kim SH, Huh SY, Lee SJ, Joung A, Kim HJ. A 5-year follow-up of rituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA neurology 2013;70:1110–1117.

    Article  PubMed  Google Scholar 

  22. Pellkofer HL, Krumbholz M, Berthele A, et al. Long-term follow-up of patients with neuromyelitis optica after repeated therapy with rituximab. Neurology 2011;76:1310–1315.

    Article  CAS  PubMed  Google Scholar 

  23. Jacob A, Weinshenker BG, Violich I, et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Archives of neurology 2008;65:1443–1448.

    Article  PubMed  Google Scholar 

  24. Diaz-Manera J, Martinez-Hernandez E, Querol L, et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology 2012;78:189–193.

    Article  CAS  PubMed  Google Scholar 

  25. Blum S, Gillis D, Brown H, et al. Use and monitoring of low dose rituximab in myasthenia gravis. Journal of neurology, neurosurgery, and psychiatry 2011;82:659–663.

    Article  PubMed  Google Scholar 

  26. Maddison P, McConville J, Farrugia ME, et al. The use of rituximab in myasthenia gravis and Lambert-Eaton myasthenic syndrome. Journal of neurology, neurosurgery, and psychiatry 2011;82:671–673.

    Article  PubMed  Google Scholar 

  27. Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 2011;378:1779–1787.

    Article  CAS  PubMed  Google Scholar 

  28. Cheson BD. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2010;28:3525–3530.

    Article  CAS  Google Scholar 

  29. Gensicke H, Leppert D, Yaldizli O, et al. Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS drugs 2012;26:11–37.

    Article  CAS  PubMed  Google Scholar 

  30. Wingerchuk DM, Carter JL. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clinic proceedings 2014;89:225–240.

    Article  PubMed  Google Scholar 

  31. Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: A phase 2 study. Neurology 2014;82:573–581.

    Article  CAS  PubMed  Google Scholar 

  32. Stuve O, Greenberg BM. Anticipated benefits and surprising effects of daclizumab in multiple sclerosis. Lancet neurology 2010;9:337–338.

    Article  Google Scholar 

  33. Gold R, Giovannoni G, Selmaj K, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet 2013;381:2167–2175.

    Article  CAS  PubMed  Google Scholar 

  34. Giovannoni G, Gold R, Selmaj K, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECTION): a multicentre, randomised, double-blind extension trial. Lancet neurology 2014.

    Google Scholar 

  35. Ayzenberg I, Kleiter I, Schroder A, et al. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA neurology 2013;70:394–397.

    Article  PubMed  Google Scholar 

  36. Krogias C, Hoepner R, Muller A, Schneider-Gold C, Schroder A, Gold R. Successful treatment of anti-Caspr2 syndrome by interleukin 6 receptor blockade through tocilizumab. JAMA neurology 2013;70:1056–1059.

    Article  PubMed  Google Scholar 

  37. Pittock SJ, Lennon VA, McKeon A, et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet neurology 2013;12:554–562.

    Article  CAS  Google Scholar 

  38. Howard JF, Jr., Barohn RJ, Cutter GR, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle & nerve 2013;48:76–84.

    Article  CAS  Google Scholar 

  39. Tradtrantip L, Zhang H, Saadoun S, et al. Anti-aquaporin-4 monoclonal antibody blocker therapy for neuromyelitis optica. Annals of neurology 2012;71:314–322.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kebir H, Kreymborg K, Ifergan I, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nature medicine 2007;13:1173–1175.

    Article  CAS  PubMed  Google Scholar 

  41. Mi S, Pepinsky RB, Cadavid D. Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS drugs 2013;27:493–503.

    Article  CAS  PubMed  Google Scholar 

  42. Bosch X, Saiz A, Ramos-Casals M. Monoclonal antibody therapy-associated neurological disorders. Nature reviews Neurology 2011;7:165–172.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto T, Nakamura I, Miura A, Momoyama G, Ito K. New-onset multiple sclerosis associated with adalimumab treatment in rheumatoid arthritis: a case report and literature review. Clinical rheumatology 2013;32:271–275.

    Article  PubMed  Google Scholar 

  44. Gregory AP, Dendrou CA, Attfield KE, et al. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature 2012;488:508–511.

    Article  CAS  PubMed  Google Scholar 

  45. Richter F, Liebig T, Guenzi E, et al. Antagonistic TNF receptor one-specific antibody (ATROSAB): receptor binding and in vitro bioactivity. PloS one 2013;8:e72156.

    Article  Google Scholar 

  46. Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. The New England journal of medicine 2014;370:322–333.

    Article  CAS  PubMed  Google Scholar 

  47. Gilbert MR, Dignam JJ, Armstrong S, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. The New England journal of medicine 2014;370:699–708.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Linker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linker, R., Huhn, K. Stellenwert und Einsatz von mAk bei neurologischen Erkrankungen. DNP 15, 62–70 (2014). https://doi.org/10.1007/s15202-014-0879-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15202-014-0879-6

Navigation