Skip to main content
Log in

A Xenogenic Bone Derivative as a Potential Adjuvant for Bone Regeneration and Implant Osseointegration: An In Vitro Study

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Several clinical conditions may limit the success of bone regeneration and/or implant osseointegration. For this reason, many compounds have been tested for their ability to stimulate this biological process. Synthetic hydroxyapatite (HA), mimicking natural bone hydroxyapatite, and extra-cellular matrix proteins, such as type I collagen, are potential candidates. However, the synthetic origin of HA and the denaturing conditions required for extracting collagen from skin and derma are sources of potential drawbacks. This study examines the in vitro effects of a natural bone derivative (NBD) extracted from equine bone and containing both natural, non-synthetic bone hydroxyapatite and native, non-denatured, type I bone collagen as a possible active compound for stimulating bone regeneration and implant osseointegration. The activity of NBD was tested on bone marrow stromal cells (BMSCs), evaluating their growth/viability by the methylthiazol tetrazolium (MTT) assay and their migration potential by a scratch assay. Moreover, expression of the hyaluronic acid receptor (CD44) and the C-X-C chemokine receptor type 4 (CXCR4, CD184) on the surface of BMSCs was assessed by flow cytometry, and the release of Transforming Growth Factor (TGF)-β, Interleukin (IL)-1α and IL-6 was quantified using an enzyme-linked immunosorbent assay (ELISA). The effect of NBD-coated implants on human osteoblasts was tested by measuring alkaline phosphatase (ALP) activity with the p-nitrophenyl phosphate (pNPP) degradation test. NBD stimulated BMSC growth/viability, migration, CD184 surface expression and the release of TGF-β1. NBD-coated implants increased ALP activity of human osteoblasts. These results indicate that NBD may be an adjuvant to accelerate both bone regeneration and osseointegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Belser UC, Mericske-Stern R, Bernard JP, Taylor TD. Prosthetic management of the partially dentate patient with fixed implant restorations. Clin Oral Implants Res. 2000;11(Suppl 1):126–415.

    Article  PubMed  Google Scholar 

  2. Jang HW, Kang JK, Lee K, Lee YS, Park PK. A retrospective study on related factors affecting the survival rate of dental implants. J Adv Prosthodont. 2011;3:204–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants—a Cochrane systematic review. Eur J Oral Implantol. 2009;2:167–84.

    PubMed  Google Scholar 

  4. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009;9:61–71.

    CAS  PubMed  Google Scholar 

  5. Kämmerer PW, Heller M, Brieger J, Klein MO, Al-Nawas B, Gabriel M. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur Cell Mater. 2011;21:364–72.

    Article  PubMed  Google Scholar 

  6. van den Beucken JJ, Walboomers XF, Leeuwenburgh SC, Vos MR, Sommerdijk NA, Nolte RJ, et al. Multilayered DNA coatings: in vitro bioactivity studies and effects on osteoblast-like cell behavior. Acta Biomater. 2007;3:587–96.

    Article  PubMed  Google Scholar 

  7. Huh JB, Kim SE, Kim HE, Kang SS, Choi KH, Jeong CM, et al. Effects of anodized implants coated with Escherichia coli-derived rhBMP-2 in beagle dogs. Int J Oral Maxillofac Surg. 2012;41:1577–84.

    Article  PubMed  Google Scholar 

  8. Cho YJ, Heo SJ, Koak JY, Kim SK, Lee SJ, Lee JH. Promotion of osseointegration of anodized titanium implants with a 1α,25-dihydroxyvitamin D3 submicron particle coating. Int J Oral Maxillofac Implants. 2011;26:1225–32.

    PubMed  Google Scholar 

  9. Marino AA, Becker RO. Evidence for epitaxy in the formation of collagen and apatite. Nature. 1970;226:652–3.

    Article  CAS  PubMed  Google Scholar 

  10. Gungormus M. The effect on osteogenesis of type I collagen applied to experimental bone defects. Dent Traumatol. 2004;20:334–7.

    Article  PubMed  Google Scholar 

  11. Liu G, Hu YY, Zhao JN, Wu SJ, Xiong Z, Lu R. Effect of type I collagen on the adhesion, proliferation, and osteoblastic gene expression of bone marrow-derived mesenchymal stem cells. Chin J Traumatol. 2004;7:358–62.

    CAS  PubMed  Google Scholar 

  12. Morra M, Cassinelli C, Cascardo G, Bollati D, Baena RR. Gene expression of markers of osteogenic differentiation of human mesenchymal cells on collagen I-modified microrough titanium surfaces. J Biomed Mater Res A. 2011;96:449–55.

    Article  CAS  PubMed  Google Scholar 

  13. De Barros RR, Novaes AB Jr, Korn P, Queiroz A, de Almeida AL, Hintze V, et al. Bone formation in a local defect around dental implants coated with extracellular matrix components. Clin Implant Dent Relat Res. 2015;17:742–57.

    Article  PubMed  Google Scholar 

  14. Sartori M, Giavaresi G, Parrilli A, Ferrari A, Aldini NN, Morra M, et al. Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. Int Orthop. 2015;39:2041–52.

    Article  PubMed  Google Scholar 

  15. Moroni A, Cadossi M, Romagnoli M, Faldini C, Giannini S. A biomechanical and histological analysis of standard versus hydroxyapatite-coated pins for external fixation. J Biomed Mater Res B Appl Biomater. 2008;86:417–21.

    Article  PubMed  Google Scholar 

  16. Bloebaum RD, Beeks D, Dorr LD, Savory CG, DuPont JA, Hofmann AA. Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin Orthop Relat Res. 1994;298:19–26.

    Google Scholar 

  17. Sun JS, Lin FH, Hung TY, Tsuang YH, Chang WH, Liu HC. The influence of hydroxyapatite particles on osteoclast cell activities. J Biomed Mater Res. 1999;45:311–21.

    Article  CAS  PubMed  Google Scholar 

  18. Hanisch O, Cortella CA, Boskovic MM, James RA, Slots J, Wikesjö UM. Experimental peri-implant tissue breakdown around hydroxyapatite-coated implants. J Periodontol. 1997;68:59–66.

    Article  CAS  PubMed  Google Scholar 

  19. Cecconi S, Mattioli-Belmonte M, Manzotti S, Orciani M, Piccioli A, Gigante A. Bone-derived titanium coating improves in vivo implant osseointegration in an experimental animal model. J Biomed Mater Res B Appl Biomater. 2014;102:303–10.

    Article  PubMed  Google Scholar 

  20. Schierano G, Bellone G, Manzella C, Preti G, Emanuelli G. In vitro effect of transforming growth factor-beta on adhesion molecule expression by human gingival fibroblasts cultured in the presence of a titanium abutment. J Periodontol. 2001;72:1658–65.

    Article  CAS  PubMed  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  22. Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng B Rev. 2008;14:179–86.

    Article  CAS  Google Scholar 

  23. Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P, et al. Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood. 2000;95:756–68.

    CAS  PubMed  Google Scholar 

  24. Morra M, Cassinelli C, Cascardo G, Cahalan P, Cahalan L, Fini M, et al. Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials. 2003;24:4639–54.

    Article  CAS  PubMed  Google Scholar 

  25. Morra M, Cassinelli C, Cascardo G, Bollati D, Rodriguez Y, Baena R. Multifunctional implant surfaces: surface characterization and bone response to acid-etched Ti implants surface-modified by fibrillar collagen I. J Biomed Mater Res A. 2010;94:271–9.

    Article  CAS  PubMed  Google Scholar 

  26. Xu B, Zhang J, Brewer E, Tu Q, Yu L, Tang J, et al. Osterix enhances BMSC-associated osseointegration of implants. J Dent Res. 2009;88:1003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsuchiya S, Hara K, Ikeno M, Okamoto Y, Hibi H, Ueda M. Rat bone marrow stromal cell-conditioned medium promotes early osseointegration of titanium implants. Int J Oral Maxillofac Implants. 2013;28:1360–9.

    Article  PubMed  Google Scholar 

  28. Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing Injury. 2005;36:1392–404.

    PubMed  Google Scholar 

  29. Sun Y, Zhang W, Lu Y, Hu Y, Ma F, Cheng W. Role of transforming growth factor beta (TGF-beta) in repairing of bone defects. Chin Med Sci J. 1996;11:209–14.

    CAS  PubMed  Google Scholar 

  30. Bessa X, Elizalde JI, Mitjans F, Piñol V, Miquel R, Panés J, et al. Leukocyte recruitment in colon cancer: role of cell adhesion molecules, nitric oxide, and transforming growth factor beta1. Gastroenterology. 2002;122:1122–32.

    Article  CAS  PubMed  Google Scholar 

  31. Wan M, Li C, Zhen G, Jiao K, He W, Jia X, et al. Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells. 2012;30:2498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anitua E, Tejero R, Zalduendo MM, Orive G. Plasma rich in growth factors promotes bone tissue regeneration by stimulating proliferation, migration, and autocrine secretion in primary human osteoblasts. J Periodontol. 2013;84:1180–90.

    Article  CAS  PubMed  Google Scholar 

  33. Ota K, Quint P, Weivoda MM, Ruan M, Pederson L, Westendorf JJ, et al. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone. 2013;57:68–75.

    Article  CAS  PubMed  Google Scholar 

  34. Schierano G, Canuto RA, Navone R, Peirone B, Martinasso G, Pagano M, et al. Biological factors involved in the osseointegration of oral titanium implants with different surfaces: a pilot study in minipigs. J Periodontol. 2005;76:1710–20.

    Article  CAS  PubMed  Google Scholar 

  35. Clokie CM, Bell RC. Recombinant human transforming growth factor beta-1 and its effects on osseointegration. J Craniofac Surg. 2003;14:268–77.

    Article  PubMed  Google Scholar 

  36. Baumgartner HR. Platelet interaction with collagen fibrils in flowing blood, I: reaction of human platelets with alpha chymotrypsin-digested subendothelium. Thromb Haemost. 1977;37:1–16.

    CAS  PubMed  Google Scholar 

  37. Kaji H, Naito J, Sowa H, Sugimoto T, Chihara K. Smad3 differently affects osteoblast differentiation depending upon its differentiation stage. Horm Metab Res. 2006;38:740–5.

    Article  CAS  PubMed  Google Scholar 

  38. Kasagi S, Chen W. TGF-beta1 on osteoimmunology and the bone component cells. Cell Biosci. 2013;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kitaori T, Ito H, Schwarz EM, Tsutsumi R, Yoshitomi H, Oishi S, et al. Stromal cell–derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009;60:813–23.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L-X, Shen L-L, Ge S-H, Wang L-M, Yu X-J, Xu Q-C, et al. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing. Int J Clin Exp Pathol. 2015;8:10261–71.

    PubMed  PubMed Central  Google Scholar 

  41. Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. Bonekey Rep. 2013;2:300.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V. Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death Dis. 2013;4:e819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Andersen RK, Zaher W, Larsen KH, Ditzel N, Drews K, Wruck W, et al. Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells. Stem Cell Res Ther. 2015;6:196.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially sponsored by Bioteck, which donated the Natural Bone Derivative, and by Akimedix, which provided the coating process for the fixtures. Data belong to the authors, and by no means did the manufacturers interfere with the conduct of the research or the publication of its results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziella Bellone.

Ethics declarations

Conflicts of interest

The authors have no financial conflicts of interest.

Ethical statement

Mandibular bone samples were collected from the lower jaw of two donor patients undergoing periodontal surgery. Because of the small sizes of the collected samples, sampling procedures did not cause any additional trauma to the operated jaw. Both of the donor patients gave their written informed consent. Ex-vivo study procedures complied with the Helsinki Declaration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellone, G., Vizio, B., Scirelli, T. et al. A Xenogenic Bone Derivative as a Potential Adjuvant for Bone Regeneration and Implant Osseointegration: An In Vitro Study. Tissue Eng Regen Med 14, 243–251 (2017). https://doi.org/10.1007/s13770-017-0029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0029-2

Keywords

Navigation