Skip to main content
Log in

Activated sludge acclimation for toluene and DEHP degradation in a two-phase partitioning bioreactor

Biodegradation of volatile organic compounds by activated sludge

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The effect of activated sludge acclimation on the biodegradation of toluene in the presence of a biodegradable non-aqueous phase liquid, di (2-ethylhexyl) phthalate (DEHP), in a two-phase partitioning bioreactor was characterized. The influence of the presence of DEHP, at a ratio of 0.1 % (volume ratio), and of the acclimation of activated sludge (AS) on the biodegradation of hydrophobic VOC was studied. AS was acclimated to both toluene and DEHP simultaneously. Using acclimated cells, 73 and 96 % improvement of the mean biodegradation rates was recorded for toluene and the organic solvent (DEHP), respectively, if compared to the values recorded in the absence of acclimation, during tests performed in Erlenmeyer flasks. Degradation rates were further improved by the use of acclimated AS in a reactor with a large head space; degradation yields for toluene and DEHP were above 99 and 89 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arriaga S, Muñoz R, Hernández S et al (2006) Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors. Environ Sci Technol 40:2390–2395

    Article  CAS  Google Scholar 

  • Béchohra I, Couvert A, Amrane A (2014) Biodegradation of toluene in a two-phase partitioning bioreactor–impact of activated sludge acclimation. Environ Technol 35:735–740. doi:10.1080/09593330.2013.848938

    Article  Google Scholar 

  • Béchohra I, Couvert A, Amrane A (2015) Absorption and biodegradation of toluene: optimization of its initial concentration and the biodegradable non-aqueous phase liquid volume fraction. Int Biodeterior Biodegrad 104:350–355. doi:10.1016/j.ibiod.2015.07.004

    Article  Google Scholar 

  • Chao WL, Cheng CY (2007) Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm. Chemosphere 67:482–488. doi:10.1016/j.chemosphere.2006.09.048

    Article  CAS  Google Scholar 

  • Chen J, Li X, Li J et al (2007) Degradation of environmental endocrine disruptor di-2-ethylhexyl phthalate by a newly discovered bacterium, Microbacterium sp. strain CQ0110Y. Appl Microbiol Biotechnol 74:676–682. doi:10.1007/s00253-006-0700-3

    Article  CAS  Google Scholar 

  • Chikh R, Couvert A, Aït Amar H, Amrane A (2011) Toluene biodegradation in a two phase partitioning system—use of a biodegradable solvent. Environ Prog Sustain Energy 30:303–308. doi:10.1002/ep.10477

    Article  CAS  Google Scholar 

  • Collins LD, Daugulis AJ (1999) Benzene/toluene/p-xylene degradation. Part I. Solvent selection and toluene degradation in a two-phase partitioning bioreactor. Appl Microbiol Biotechnol 52:354–359

    Article  CAS  Google Scholar 

  • Darracq G, Couvert A, Couriol C et al (2010a) Silicone oil: an effective absorbent for the removal of hydrophobic volatile organic compounds. J Chem Technol Biotechnol 85:309–313. doi:10.1002/jctb.2331

    Article  CAS  Google Scholar 

  • Darracq G, Couvert A, Couriol C et al (2010b) Kinetics of toluene and sulfur compounds removal by means of an integrated process involving the coupling of absorption and biodegradation. J Chem Technol Biotechnol 85:1156–1161. doi:10.1002/jctb.2414

    Article  CAS  Google Scholar 

  • Dumont E, Darracq G, Couvert A et al (2011) VOC absorption in a countercurrent packed-bed column using water/silicone oil mixtures: influence of silicone oil volume fraction. Chem Eng J 168:241–248. doi:10.1016/j.cej.2010.12.073

    Article  CAS  Google Scholar 

  • Feng Z, Kunyan C, Jiamo F et al (2002) Biodegradability of di(2-ethylhexyl) phthalate by pseudomonas fluorescens FS1. Water Air Soil Pollut 140:297–305. doi:10.1023/A:1020108502776

    Article  CAS  Google Scholar 

  • Ferrag-Siagh F, Fourcade F, Soutrel I et al (2013) Tetracycline degradation and mineralization by the coupling of an electro-Fenton pretreatment and a biological process. J Chem Technol Biotechnol 88:1380–1386. doi:10.1002/jctb.3990

    Article  CAS  Google Scholar 

  • Hernández M, Quijano G, Thalasso F et al (2010) A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors. Biotechnol Bioeng 106:731–740. doi:10.1002/bit.22748

    Article  Google Scholar 

  • Hernández M, Muñoz R, Daugulis AJ (2011) Biodegradation of VOC mixtures of different hydrophobicities in two-phase partitioning bioreactors containing tailored polymer mixtures. J Chem Technol Biotechnol 86:138–144. doi:10.1002/jctb.2496

    Article  Google Scholar 

  • Horn O, Nalli S, Cooper D, Nicell J (2004) Plasticizer metabolites in the environment. Water Res 38:3693–3698. doi:10.1016/j.watres.2004.06.012

    Article  CAS  Google Scholar 

  • Jin Y, Veiga MC, Kennes C (2007) Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions. Chemosphere 68:1186–1193. doi:10.1016/j.chemosphere.2007.01.069

    Article  CAS  Google Scholar 

  • Johnson GR, Olsen RH (1997) Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl Environ Microbiol 63:4047–4052

    CAS  Google Scholar 

  • Madsen PL, Thyme JB, Henriksen K et al (1999) Kinetics of di-(2-ethylhexyl)phthalate mineralization in sludge-amended soil. Environ Sci Technol 33:2601–2606. doi:10.1021/es981015o

    Article  CAS  Google Scholar 

  • Malhautier L, Quijano G, Avezac M et al (2014) Kinetic characterization of toluene biodegradation by Rhodococcus erythropolis: towards a rationale for microflora enhancement in bioreactors devoted to air treatment. Chem Eng J 247:199–204. doi:10.1016/j.cej.2014.02.099

    Article  CAS  Google Scholar 

  • Mozo I, Lesage G, Yin J et al (2012) Dynamic modeling of biodegradation and volatilization of hazardous aromatic substances in aerobic bioreactor. Water Res 46:5327–5342. doi:10.1016/j.watres.2012.07.014

    Article  CAS  Google Scholar 

  • Muñoz R, Daugulis AJ, Hernández M, Quijano G (2012) Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnol Adv 30:1707–1720. doi:10.1016/j.biotechadv.2012.08.009

    Article  Google Scholar 

  • Muñoz R, Quijano G, Revah S (2015) Two-phase partitioning bioreactors: towards a new generation of high-performance biological processes for VOC and CH4 abatement. Electron J Energy Environ. http://repositoriodigital.uct.cl/handle/10925/1652. Accessed 25 May 2015

  • Quijano G, Couvert A, Amrane A et al (2011a) Toxicity and biodegradability of ionic liquids: new perspectives towards whole-cell biotechnological applications. Chem Eng J 174:27–32

    Article  CAS  Google Scholar 

  • Quijano G, Couvert A, Amrane A et al (2011b) Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chem Eng Sci 66:2707–2712. doi:10.1016/j.ces.2011.01.047

    Article  CAS  Google Scholar 

  • Rappert S, Müller R (2005) Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manag 25:887–907. doi:10.1016/j.wasman.2005.07.008

    Article  CAS  Google Scholar 

  • Sarkar J, Chowdhury PP, Dutta TK (2013) Complete degradation of di-n-octyl phthalate by Gordonia sp. strain Dop5. Chemosphere 90:2571–2577. doi:10.1016/j.chemosphere.2012.10.101

    Article  CAS  Google Scholar 

  • Smith MR (1991) The biodegradation of aromatic hydrocarbons by bacteria. In: Ratledge C (ed) Physiology of biodegradative microorganisms. Springer, The Netherlands, pp 191–206

    Chapter  Google Scholar 

  • Solano-Serena F, Marchal R, Vandecasteele JP (2001) Biodégradabilité de l’essence dans l’environnement: de l’évaluation globale au cas des hydrocarbures récalcitrants. Oil Gas Sci Technol 56:479–498

    Article  CAS  Google Scholar 

  • Spigno G, Pagella C, Daria Fumi M et al (2003) VOCs removal from waste gases: gas-phase bioreactor for the abatement of hexane by Aspergillus niger. Chem Eng Sci 58:739–746. doi:10.1016/S0009-2509(02)00603-6

    Article  CAS  Google Scholar 

  • Tomei MC, Annesini MC, Rita S, Daugulis AJ (2010) Two-phase partitioning bioreactors operating with polymers applied to the removal of substituted phenols. Environ Sci Technol 44:7254–7259

    Article  CAS  Google Scholar 

  • Trinci APJ (1969) A kinetic study of the growth of Aspergillus nidulans and other fungi. J Gen Microbiol 57:11–24

    Article  CAS  Google Scholar 

  • Van Groenestijn JW, Lake ME (1999) Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases. Environ Prog 18:151–155. doi:10.1002/ep.670180310

    Article  Google Scholar 

  • Wang J, Liu P, Qian Y (1996) Biodegradation of phthalic acid esters by acclimated activated sludge. Environ Int 22:737–741. doi:10.1016/S0160-4120(96)00065-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The technical support of this research was provided by the National School of Chemistry of Rennes. Appreciation is extended to Mrs Marguerite Lemasle, for her help during the analysis of samples by GC/MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Béchohra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béchohra, I., Le Menn, J.B., Couvert, A. et al. Activated sludge acclimation for toluene and DEHP degradation in a two-phase partitioning bioreactor. Int. J. Environ. Sci. Technol. 13, 1883–1890 (2016). https://doi.org/10.1007/s13762-016-1019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1019-y

Keywords

Navigation