Skip to main content
Log in

Chromium uptake by giant reed under rhizobacterial inhibition

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The role of rhizospheric microbes of giant reed (Arundo donax L.) in Cr uptake from hydroponic culture was investigated. The control group was exposed to Cr in range of 25–100 mg L−1 containing a control itself (with no metal addition). The experimental group received same Cr treatments, but in addition was exposed to antibiotic treatment in order to inhibit rhizospheric bacteria. The range of Cr accumulated in the roots was 3–7.65 mg L−1; in stem it ranged 2.15–42.4 mg kg−1; while in leaves, the range of Cr content was 13.7–15 mg kg−1. Overall, Cr uptake in A. donax (without rhizobacterial inhibition) was root < leaf < stem. However, the amount of Cr uptake in plants with rhizobacterial inhibition was significantly less (~4.6-folds in 100 mg L−1 Cr treatment) than those without such inhibition clearly highlighting that rhizobacterial inhibition decreased the Cr uptake. The experimental results clearly demonstrated that the inhibition of the rhizobacterial populations had great influence on the Cr uptake. However, Cr uptake could not be completely inhibited as some metal uptake was observed after the rhizobacterial inhibition although it was significantly less than the Cr uptake of plants without such inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Bahijri SM, Mufti AM (2002) Beneficial effects of chromium in people with type 2 diabetes, and urinary chromium response to glucose load as a possible indicator of status. Biol Trace Elem Res 85:97–109

    Article  CAS  Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marchner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130(1–2):231–241

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Brezeanu C, de fotosinteză VP (2005) Permeabilitatea membranelor Ui conţinutul de clorofilă din frunzele de pepene galben în timpul procesului de creUtere. Lucrări Jtiinţifice Ser Hortic 48(1–2):635–638

    Google Scholar 

  • Brígido C, Glick BR (2015) Phytoremediation using rhizobia. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation, 1st edn. Springer, Germany, pp 95–114

    Google Scholar 

  • Caggiano R, Sabia S, D’Emilio M, Macchiato M, Anastasio A, Ragosta M, Paino S (2005) Metal levels in fodder, milk, dairy products, and tissues sampled in ovine farms of Southern Italy. Environ Res 99:48–57

    Article  CAS  Google Scholar 

  • Caussy D, Gochfeld M, Gurzau E, Neagu C, Ruedel H (2003) Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicol Environ Safe 56(1):45–51

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Debars S, Gutierrez-Corona F, Loza-Tavera H, Carlos-Tarres-Guzman M, Moreno-Sanchez R (2001) Interaction of chromium with microgenesis and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE (1992) Survival of the indigenous population of Rhizobium leguminosarum biovar trifolii in soil spiked with Cd, Zn, Cu and Ni salts. Soil Biol Biochem 24(7):625–632

    Article  CAS  Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31(6):861–866

    Article  CAS  Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation volatilization by Indian Mustard. Plant Physiol 119:565–573

    Article  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46(8):834–840

    Article  CAS  Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Avino J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  CAS  Google Scholar 

  • Glick BR (2015) Introduction to plant growth-promoting bacteria. In: Beneficial plant–bacterial interactions, 1st edn. Springer, Germany, pp 1–28

  • Hasnain S, Sabri AN (1996) Growth stimulation of Triticum Aestivum seedlings under Cr-stresses by non rhizospheric pseudomonad strains. Abstracts of the 7th international symposium on biological nitrogen fixation with non-legumes, Kluwer Academic Publishers, The Netherlands, p 36

  • Herawati N, Suusuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil Japan, Indonesia and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirt Ges 98:59–78

    Google Scholar 

  • Hoagland D, Arnon DI (1938) The water culture method for growing plants without soil. Bull Calif Agric Stat 346:1–39

    Google Scholar 

  • Huang Y, Tao S, Chen YJ (2005) The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci 17(2):276–280 (in Chinese)

    CAS  Google Scholar 

  • Ianculov I, Palicica R, Butnariu M, Dumbravă D, Gergen I (2005) Obţinerea, în stare cristalină a clorofilei din cetină de brad (Abies alba) Ui de pin (Pinus sylvestris). Rev Chim 56(4):441–443

    CAS  Google Scholar 

  • Imsande J (1998) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plant 103(1):139–144

    Article  CAS  Google Scholar 

  • Jamil M, Zeb S, Anees M, Roohi A, Ahmed I, ur Rehman S, Rha E (2014) Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytorem 16(6):554–571

    Article  CAS  Google Scholar 

  • Kausar S, Mahmood Q, Raja IA, Khan A (2012) Potential of Arundo donax to treat chromium contamination. Ecol Engine 42:256–259

    Article  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  CAS  Google Scholar 

  • Liu W, Wang Q, Wang B, Hou J, Luo Y, Tang C, Franks AE (2015) Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. J Soil Sedim 15(5):1191–1199

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:1–6

    Article  Google Scholar 

  • Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Shah MM, Azim MR (2010a) Phytoremediation potential of Arundo donax in arsenic contaminated synthetic wastewater. Bioresour Technol 101:5815–5819

    Article  CAS  Google Scholar 

  • Mirza N, Pervez A, Mahmood Q, Ahmed SS (2010b) Phytoremediation of Arsenic (As) and Mercury (Hg) from contaminated soil. World Appl Sci J 8(1):113–118

    CAS  Google Scholar 

  • Mirza N, Pervez A, Mahmood Q, Shah MM (2011) Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecol Eng 37:1949–1956

    Article  Google Scholar 

  • Mukesh KR, Kumar P, Singh M, Singh A (2008) Toxic effect of heavy metals in livestock health. Veteran World 1:28–30

    Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    Article  CAS  Google Scholar 

  • Reid CP, Szaniszlo PJ, Crowley DE (1986) Siderophore involvement in plant iron nutrition. In: Swinburne TR (ed) Iron siderophores and plant diseases. Plenum Press, New York, pp 29–42

    Chapter  Google Scholar 

  • Sabeen M, Mahmood Q, Irshad M, Fareed I, Khan A, Ullah F, Hussain J, Hayat Y, Tabassum S (2013) Cadmium phytoremediation by Arundo donax L. from contaminated soil and water. BioMed Res Int 2013:1–9

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  Google Scholar 

  • Sharma P, Goyal P, Srivastava S (2007a) Biosorption of trivalent and hexavalent chromium from aqueous systems using shelled Moringa oleifera seeds (SMOS). Chem Speciat Bioavailab 19:175–181

    Article  CAS  Google Scholar 

  • Sharma P, Kumari P, Srivastava MM, Srivastava S (2007b) Ternary biosorption studies of Cd (II), Cr(III) and Ni (II) on shelled Moringa oleifera seeds. Bioresour Technol 98:474–477

    Article  CAS  Google Scholar 

  • Shinwari KI, Shah AU, Afridi MI, Zeeshan M, Hussain H, Hussain J, Ahmad O (2015) Application of plant growth promoting rhizobacteria in bioremediation of heavy metal polluted soil. Asian J Multidiscip Stud 3(4):179–185

    Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 223. Springer, New York, pp 33–52

  • Titah HS, Abdullah SRS, Mushrifah I, Anuar N, Basri H, Mukhlisin M (2013) Effect of applying rhizobacteria and fertilizer on the growth of Ludwigia octovalvis for arsenic uptake and accumulation in phytoremediation. Ecol Engine 58:303–313

    Article  Google Scholar 

  • Titah HS, Abdullah SRS, Mushrifah I, Anuar N, Basri H, Mukhlisin M (2014) Phytotoxicity and uptake of arsenic by Ludwigia octovalvis in a pilot reed bed system. Environ Engine Sci 31(2):71–79

    Article  CAS  Google Scholar 

  • van der Lelie D (1998) Biological interactions: the role of soil bacteria in the bioremediation of heavy metal polluted soils. In: Vangronsveld J, Cunningham SD (eds) Metal contaminated soils: in situ inactivation and phytorestoration. Springer, New York, pp 31–50 (Chapter 3)

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Wang YJ, Liu SP, Chen XR (1993) A survey on winter birds in Shenzhen Futian Mangrove. Ecol Sci 12:74–84

    Google Scholar 

  • Wang B, Liu L, Goa Y, Chen J (2009) Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Chemosphere 74:1400–1403

    Article  CAS  Google Scholar 

  • Wenzel WW, Adriano DC, Salt D, Smith R (1999) Phytoremediation: a plant–microbe-based remediation system. In: Adriano DC, Bollag J-M, Frankenberger WT Jr, Sims RC (eds) Agronomy monograph, vol 37. Madison, USA, pp 457–508

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35(15):3144–3150

    Article  CAS  Google Scholar 

  • Wong WS, Tan SN, Ge L, Chen X, Yong JWH (2015) The importance of phytohormones and microbes in biofertilizers. In: Maheshwari DK (ed) Bacterial metabolites in sustainable agroecosystem. Springer, Germany, pp 105–158

  • Xiong J, He Z-li, Liu D, Mahmood Q, Yang X-E (2008) The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Chemosphere 70:489–494

    Article  CAS  Google Scholar 

  • Zhao FJ, Mcgrath SP, Grossland AR (1994) Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP–AES). Commun Soil Sci Plant Anal 25:407–418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Higher Education of Pakistan Grant No. 2122 to conduct the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Mahmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, S., Mahmood, Q., Pervez, A. et al. Chromium uptake by giant reed under rhizobacterial inhibition. Int. J. Environ. Sci. Technol. 13, 1581–1590 (2016). https://doi.org/10.1007/s13762-016-0996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0996-1

Keywords

Navigation