Skip to main content

Advertisement

Log in

Biodegradation of phenol by a novel diatom BD1IITG-kinetics and biochemical studies

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A phenol-degrading novel diatom BD1IITG was isolated from petroleum refinery wastewater and characterized (GenBank Accession No. KJOO2533). HPLC analysis showed the diatom could degrade phenol in the concentration range of 50–250 mg/l in Fog’s media. The highest specific growth and degradation rate were achieved at 100 mg/l phenol. It could also mineralize phenol along with aliphatics in petroleum refinery wastewater. Growth kinetic modeling shows that Haldane model best represents the growth behavior of the diatom in nutrient media as well as refinery wastewater. Biokinetic parameters suggest that the diatom possesses higher maximum specific growth rate (µ max = 0.4 day−1), better tolerance to toxicity (K I = 90.24 mg/l) and high phenol affinity (K s = 20.99 mg/l) in refinery wastewater as compared to Fog’s media confirming practical applicability of the strain for wastewater treatment. FTIR fingerprinting of biomass indicates intercellular phenol uptake and breakdown into its intermediates via phenol degradation pathway. Pathway was elucidated using HPLC, LC–MS and UV–visible spectrophotometry confirming prominence of ortho- over meta pathway for phenol metabolism. The diatom produces biosurfactant with highest emulsifying activity at 100 mg/l phenol which may contribute to highest degradation rate at this concentration. Infrared analysis confirms increased biosynthesis of lipids and polysaccharides in phenol-degrading biomass, indicating its potential use as feedstock of clean ecofriendly energy sources as biodiesel or bioethanol. The phenol degradation capability coupled with potential applicability of the spent biomass as biofuel feedstock makes diatom BD1IITG a potential candidate for a clean environmentally sustainable process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelwahab O, Amin NK, El-Ashtoukhy E-SZ (2009) Electrochemical removal of phenol from oil refinery wastewater. J Haz Mat 163:711–716

    Article  CAS  Google Scholar 

  • Agarry SE, Durojaiye AO, Yusuf RO, Aremu MO (2008) Biodegradation of phenol in refinery wastewater by pure cultures of Pseudomonas aeruginosa NCIB 950 and Pseudomonas fluorescence NCIB 3756. Int J Environ Pollut 32:3–11

    Article  CAS  Google Scholar 

  • Aiba S, Shoda M, Nagatani M (1968) Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng 10:845–864

    Article  CAS  Google Scholar 

  • Ali S, Fernandez-Lafuente R, Cowan DA (1998) Meta-pathway degradation of phenolics by thermophilic Bacilli. Enz Microb Technol 23:462–468

    Article  CAS  Google Scholar 

  • Banerjee A, Ghoshal AK (2010) Phenol degradation by Bacillus cereus: pathway and kinetic modeling. Bioresour Technol 101:5501–5507

    Article  CAS  Google Scholar 

  • Baranyi J (2010) Modelling and parameter estimation of bacterial growth with distributed lag time, Dissertation, University of Szeged

  • Basha KM, Rajendran A, Thangavelu V (2010) Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 2:219–234

    Google Scholar 

  • Cai W, Li J, Zhang Z (2007) The characteristics and mechanisms of phenol biodegradation by Fusarium sp. J Hazard Mater 148:38–42

    Article  CAS  Google Scholar 

  • Chaudary L, Pradhan P, Soni N, Singh P, Tiwari A (2014) Algae as feedstock in bioethanol production: new entrance in biofuel world. Int J ChemTechnol Res 2:1381–1389

    Google Scholar 

  • Deereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Gascuel OJM (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Article  Google Scholar 

  • Droussi ZD, Rosaria V, Provenzano M, Hafidi M, Ouatmane A (2009) Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J Hazard Mater 164:1281–1285

    Article  CAS  Google Scholar 

  • Duan Z (2011) Microbial degradation of phenol by activated sludge in a batch reactor. Environ Protec Eng 37:53–63

    CAS  Google Scholar 

  • Edwards VH (2004) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12:679–712

    Article  Google Scholar 

  • El Naas MH, Al-Zuhair S, Al Hajja MA (2010) Removal of phenol from petroleum refinery wastewater through absorption on date pit activated carbon. Chem Eng J 162:997–1005

    Article  CAS  Google Scholar 

  • El-Sheekh MM, Ghareib MM, EL-Souod GWA (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegrad 3:133

    Article  CAS  Google Scholar 

  • Firozjaee TT, Najafpour GD, Khavarpour M, Bakhshi Z, Pishgar R, Mousavi N (2011) Phenol biodegradation kinetics in an anaerobic batch reactor. Iran J Environ 2:68–73

    Google Scholar 

  • Gracia MCC, Camacho GF, Miron AS, Sevilla JMF, Chisti Y, Grima EM (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689–694

    Google Scholar 

  • Haldane JBS (1965) Enzyme. MIT Press, Cambridge

    Google Scholar 

  • Hasan SA, Jabeen S (2015) Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus sp. Biotechnol Biotechnol Equipm 29:45–53

    Article  CAS  Google Scholar 

  • Hassan M, Essam T, Yassin AS, Salama A (2014) Screening of biosurfactant production ability among organic pollutants degrading isolates collected from Egyptian environment. Microb Biochem Technol 6:4

    Article  Google Scholar 

  • Hidelbrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatom in the biofuel industry. Biofuels 3:221–240

    Article  Google Scholar 

  • Hofrichter M, Gunther T, Fritsche W (1993) Metabolism of phenol, chloro and nitrophenol by Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegradation 3:415–421

    Article  CAS  Google Scholar 

  • Joo HN, Lee CG (2007) Antibiotics addition as an alternative sterilization method for axenic cultures in Haematococcus pluvialis. J Ind Eng Chem 13:110–115

    CAS  Google Scholar 

  • Jou CJG, Huang GC (2003) A pilot study for oil refinery wastewater treatment using a fixed-film bioreactor. Adv Environ Res 7:463–469

    Article  CAS  Google Scholar 

  • Kavitha C, Ashokkumar V, Chinnasamy S, Bhaskar S, Rengasamy R (2014) Pretreatment of lipid extracted Brotryococcus braunii spent biomass for bioethanol production. Int J Curr Biotechnol 2:11–18

    CAS  Google Scholar 

  • Kelknar V, Kosarnic N (1992) Degradation of phenols by algae. Environ Technol 13:493–501

    Article  Google Scholar 

  • Klink F (2014) Dealing with metal adduct ions in electrospray. http://www.sepscience.com/Information/Archive/MS-Solutions/233-/MS-Solutions-3-Dealing-with-Metal-Adduct-Ions-in-Electrospray-Part-1. Accessed 11 May 2014

  • Kong WB, Yang H, CaoYT Song H H, Xia SF (2013) Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technol Biotechnol 51:62–69

    CAS  Google Scholar 

  • Levitan O, Dinamarca J, Hochman G, Falkowski PG (2014) Diatoms: a fossil fuel of the future. Trends Biotechnol 32:117–124

    Article  CAS  Google Scholar 

  • Li Y, Li J, Wang C, Wang P (2010) Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresour Technol 101:6740–6744

    Article  CAS  Google Scholar 

  • Lovell CR, Eriksen NT, Lewitus AJ, Chen YP (2002) Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds. Mar Ecol Progr 229:11–18

    Article  CAS  Google Scholar 

  • Mahiuddin MD, Fakhruddin ANM, Al-Mahin A (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiol 12:1–6

  • Mathur AK, Majumder CB (2010) Kinetics modelling of the biodegradation of benzene, toluene and phenol as single substrate and mixed substrate by using Pseudomonas putida. Chem Biochem Eng 24:101–109

    CAS  Google Scholar 

  • Murdock JN, Wetzel DL (2009) FTIR microspectroscopy enhances biological and ecological analysis of algae. Appl Spectroscop Rev 44:335–361

    Article  CAS  Google Scholar 

  • Neujhar HY, Gaal A (1973) Phenol hydroxylase from yeast. Eur J Biochem 35:386–400

    Article  Google Scholar 

  • Ojumu TV, Bello OO, Sonibare JA, Solomon BO (2005) Evaluation of microbial systems for bioremediation of petroleum refinery effluents in Nigeria. Afr J Biotechnol 4:31–35

    CAS  Google Scholar 

  • Ornston LN (1966) The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas putida: III enzymes of the catechol pathway. J Biol Chem 241:3800–3810

    CAS  Google Scholar 

  • Páca J Jr, Kremláčková V, Turek M, Suchá V, Vilímková L, Páca J, Halecký M, Stiborová M (2007) Isolation and partial characterization of cytoplasmic NADPH-dependent phenol hydroxylase oxidizing phenol to catechol in Candida tropicalis yeast. Enz Microb Technol 40:919–926

    Article  Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657–1659

    Article  CAS  Google Scholar 

  • Rocha LL, Cordeiro RDA, Cavalcante RM, Nascimento RFD, Martins SCS, Santaella ST, Melo VMM (2007) Isolation and characterization of phenol degrading yeasts from an oil refinery wastewater in Brazil. Mycopathol 164:183–188

    Article  CAS  Google Scholar 

  • Sahoo NK, Ghosh PK, Pakshirajan K (2011) Kinetics of 4-bromophenol degradation using calcium alginate immobilized Arthrobacter chlorophenolicus A6. Int J Earth Sci Eng 4:663–668

    CAS  Google Scholar 

  • Santos VL, Linardi VR (2004) Biodegradation of phenol by a filamentous fungi isolated from industrial effluents—identification and degradation potential. Process Biochem 39:1001–1006

    Article  CAS  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008) Growth kinetics of an indigenous mixed microbial constrotium during phenol degradation in a batch reactor. Bioresour Technol 99:205–209

    Article  CAS  Google Scholar 

  • Scragg AH (2006) The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1. Enzym Microb Technol 39:796–799

    Article  CAS  Google Scholar 

  • Semple KT, Cain RB (1996) Biodegradation of phenol by algae Ochromonas danica. Appl Environ Microbiol 62:1265–1273

    CAS  Google Scholar 

  • Senthivelan T, Kanagaraj J, Panda RC, Mandal AB (2014) Biodegradation of phenol by mixed microbial culture: an ecofriendly approach for pollution reduction. Clean Technol Environ Policy 16:113–126

    Article  Google Scholar 

  • Sun JQ, Xu L, Tang YQ, Chen FM, Wu XL (2012) Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains. Bioreour Technol 123:664–668

    Article  CAS  Google Scholar 

  • Tsai SC, Tsai LD, Li YK (2005) An isolated Candida albicans TL3 capable of degrading phenol at large concentration. Biosci Biotechnol Biochem 69:2358–2367

    Article  CAS  Google Scholar 

  • Webb JL (1963) Enzyme and metabolic inhibitors. Academic Press, USA

    Book  Google Scholar 

  • Wharfe ES, Jarvis RM, Winder CL, Whiteley AS, Goodacre R (2010) Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol. Environ Microbiol 12:3253–3263

    Article  CAS  Google Scholar 

  • Yang JS, Rasa E, Tantayotai P, Scow KM, Yuan HL, Hristova KR (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082

    Article  CAS  Google Scholar 

  • Yano T, Nakahara T, Kamiyama S, Yamada K (1966) Kinetic studies on microbial activities in concentrated solutions I Effect of excess sugars on oxygen uptake rate of a cell free respiratory system. Agric Biol Chem 30:42–48

    Article  CAS  Google Scholar 

  • Zhao X, Wang Y, Ye Z, Borthwick AGL, Ni J (2006) Oil field wastewater treatment in Biological Aerated Filter by immobilized microorganisms. Process Biochem 41:1475–1483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Indian Institute of Technology for providing research fellowship to pursue doctoral studies at the Centre for the Environment. The present work is not financially supported by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Mandal, T.K. & Patra, S. Biodegradation of phenol by a novel diatom BD1IITG-kinetics and biochemical studies. Int. J. Environ. Sci. Technol. 13, 529–542 (2016). https://doi.org/10.1007/s13762-015-0857-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0857-3

Keywords

Navigation