Skip to main content
Log in

Nitrous oxide emissions in a biofilm loaded with different mixtures of concentrated household wastewater

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Aerobic biofilm systems are increasingly used for household wastewater treatment, but little is known about their potential to emit nitrous oxide in response to different loading conditions. We studied nitrification and nitrous oxide production in a biofilm reactor that was continuously fed with three different mixtures of household wastewater. Higher proportions of blackwater increased nitrification activity, which resulted in enhanced nitrite accumulation and nitrous oxide emissions. Applying a conceptual biofilm model together with the results of ancillary batch incubations suggested that this was caused by a higher proportion of slowly degradable compounds in blackwater. Increasing amounts of blackwater would result in less oxygen depletion by heterotrophic degradation in outer biofilm layers, leading to nitrite accumulation by enhanced ammonia oxidation as well as electron limitation of denitrification in anoxic biofilm layers. Under such conditions, nitrifier denitrification and incomplete heterotrophic denitrification would be the prevailing sources of nitrous oxide emission. These assumptions are supported by an exponential increase in the determined emission factor (nitrous oxide relative to oxidized ammonia), which accounted for 0.7 with 20 % blackwater, 1.1 with 50 % blackwater, and 8.5 with 100 % blackwater in the wastewater load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarnink AJA, Elzing A (1998) Dynamic model for ammonia volatilization in housing with partially slatted floors, for fattening pigs. Livest Prod Sci 53:153–169. doi:10.1016/s0301-6226(97)00153-x

    Article  Google Scholar 

  • Andreottola G, Damiani E, Foladori P, Nardelli P, Ragazzi M (2003) Treatment of mountain refuge wastewater by fixed and moving bed biofilm systems. Water Sci Technol 48:169–177

    CAS  Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48:835–852

    CAS  Google Scholar 

  • Azizi S, Valipour A, Sithebe T (2013) Evaluation of different wastewater treatment processes and development of a modified attached growth bioreactor as a decentralized approach for small communities. Sci World J. doi:10.1155/2013/156870

    Google Scholar 

  • Beaumont HJE et al (2002) Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite. J Bacteriol 184:2557–2560. doi:10.1128/jb.184.9.2557-2560.2002

    Article  CAS  Google Scholar 

  • Daude D, Stephenson T (2003) Moving bed biofilm reactors: a small-scale treatment solution. Water Sci Technol 48:251–257

    CAS  Google Scholar 

  • de Graaff MS, Zeeman G, Temmink H, van Loosdrecht MCM, Buisman CJN (2010) Long term partial nitritation of anaerobically treated black water and the emission of nitrous oxide. Water Res 44:2171–2178

    Article  Google Scholar 

  • Dulekgurgen E, Dogruel S, Karahan Ö, Orhon D (2006) Size distribution of wastewater COD fractions as an index for biodegradability. Water Res 40:273–282

    Article  CAS  Google Scholar 

  • Elenter D, Milferstedt K, Zhang W, Hausner M, Morgenroth E (2007) Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm. Water Res 41:4657–4671. doi:10.1016/j.watres.2007.06.050

    Article  CAS  Google Scholar 

  • Fux C, Huang D, Monti A, Siegrist H (2004) Difficulties in maintaining long-term partial nitritation of ammonium-rich sludge digester liquids in a moving-bed biofilm reactor (MBBR). Water Sci Technol 49:53–60

    CAS  Google Scholar 

  • Gujer W, Henze M, Mino T, van Loosdrecht M (1999) Activated sludge model no. 3. Water Sci Technol 39:183–193. doi:10.1016/s0273-1223(98)00785-9

    Article  CAS  Google Scholar 

  • Hocaoglu SM, Insel G, Cokgor EU, Baban A, Orhon D (2010) COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions. J Chem Technol Biotechnol 85:1241–1249. doi:10.1002/jctb.2423

    Article  Google Scholar 

  • ICCP (2001) Climate change 2001: the scientific basis. Cambridge University Press, New York

  • Itokawa H, Hanaki K, Matsuo T (2001) Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Res 35:657–664. doi:10.1016/s0043-1354(00)00309-2

    Article  CAS  Google Scholar 

  • Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43:4093–4103. doi:10.1016/j.watres.2009.03.001

    Article  CAS  Google Scholar 

  • Kindaichi T, Ito T, Okabe S (2004) Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol 70:1641–1650. doi:10.1128/aem.70.3.1641-1650.2004

    Article  CAS  Google Scholar 

  • Larsen TA, Alder AC, Eggen RIL, Maurer M, Lienert J (2009) Source separation: will we see a paradigm shift in wastewater handling. Environ Sci Technol 43:6121–6125. doi:10.1021/es803001r

    Article  CAS  Google Scholar 

  • Law Y, Ni BJ, Lant P, Yuan ZG (2012) N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Res 46:3409–3419. doi:10.1016/j.watres.2012.03.043

    Article  CAS  Google Scholar 

  • Logan BE, Hermanowicz SW, Parker DS (1987) A fundamental model for trickling filter process design. J Water Pollut Control Fed 59:1029–1042

    CAS  Google Scholar 

  • Molstad L, Dörsch P, Bakken LR (2007) Robotized incubation system for monitoring gases (O2, NO, N2O, N2) in denitrifying cultures. J Microbiol Methods 71:202–211. doi:10.1016/j.mimet.2007.08.011

    Article  CAS  Google Scholar 

  • Pan YT, Ni BJ, Yuan ZG (2013) Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification. Environ Sci Technol 47:11083–11091. doi:10.1021/es402348n

    Article  CAS  Google Scholar 

  • Penn R, Hadari M, Friedler E (2012) Evaluation of the effects of greywater reuse on domestic wastewater quality and quantity. Urban Water J 9:137–148. doi:10.1080/1573062x.2011.652132

    Article  Google Scholar 

  • Poth M, Focht DD (1985) N-15 kinetic-analysis of N2O production by Nitrosomonas europaea—an examination of nitrifier dentrification. Appl Environ Microbiol 49:1134–1141

    CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. doi:10.1126/science.1176985

    Article  CAS  Google Scholar 

  • Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—could enzymic regulation hold the key? Trends Biotechnol 27:388–397. doi:10.1016/j.tibtech.2009.03.009

    Article  CAS  Google Scholar 

  • Rittmann BE, Regan JM, Stahl DA (1994) Nitrification as a source of soluble organic substrate in biological treatment. Water Sci Technol 30:1–8

    CAS  Google Scholar 

  • Schmidt I (2009) Chemoorganoheterotrophic growth of Nitrosomonas europaea and Nitrosomonas eutropha. Curr Microbiol 59:130–138. doi:10.1007/s00284-009-9409-8

    Article  CAS  Google Scholar 

  • Schreiber F, Loeffler B, Polerecky L, Kuypers MMM, de Beer D (2009) Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm. ISME J 3:1301–1313. doi:10.1038/ismej.2009.55

    Article  CAS  Google Scholar 

  • Schreiber F, Wunderlin P, Udert KM, Wells GF (2012) Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol 3:24. doi:10.3389/fmicb.2012.00372

    Article  Google Scholar 

  • Todt D, Heistad A, Jenssen PD (2014) Load and distribution of organic matter and nutrients in a separated household wastewater stream. Environ Technol. doi:10.1080/09593330.2014.997300

    Google Scholar 

  • Upadhyay AK, Hooper AB, Hendrich MP (2006) NO reductase activity of the tetraheme cytochrome c (554) of Nitrosomonas europaea. J Am Chem Soc 128:4330–4337. doi:10.1021/ja055183+

    Article  CAS  Google Scholar 

  • Wanner O, Reichert P (1996) Mathematical modeling of mixed-culture biofilms. Biotechnol Bioeng 49:172–184

    Article  CAS  Google Scholar 

  • Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, van Loosdrecht MCM (2006) Mathematical modeling of biofilms. IWA Publishing, London

    Google Scholar 

  • Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46:1027–1037. doi:10.1016/j.watres.2011.11.080

    Article  CAS  Google Scholar 

  • Yang JJ, Trela J, Plaza E, Tjus K (2013) N2O emissions from a one stage partial nitrification/anammox process in moving bed biofilm reactors. Water Sci Technol 68:144–152. doi:10.2166/wst.2013.232

    Article  CAS  Google Scholar 

  • Zhang RH, Day DL, Christianson LL, Jepson WP (1994) A computer-model for predicting ammonia release rates from swine manure pits. J Agric Eng Res 58:223–229. doi:10.1006/jaer.1994.1052

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Norwegian Research Council (Grant No skattefunn-226774). A special thanks also to Associate Prof. Arve Heistad for the support to the pilot-scale experiment setup and Olga Popovic for helping with analysis work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Todt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todt, D., Dörsch, P. Nitrous oxide emissions in a biofilm loaded with different mixtures of concentrated household wastewater. Int. J. Environ. Sci. Technol. 12, 3405–3416 (2015). https://doi.org/10.1007/s13762-015-0778-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0778-1

Keywords

Navigation