Skip to main content
Log in

Rare slow channel congenital myasthenic syndromes without repetitive compound muscle action potential and dramatic response to low dose fluoxetine

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Congenital myasthenic syndromes are rare hereditary disorders caused by mutations associated with proteins of the neuromuscular junction. Abnormal ‘‘gain of function’’ mutations result in prolonged nicotinic acetylcholine receptor channel open state causing a rare subtype of CMS, slow-channel CMS (SCCMS). Mutations in the delta subunit encoding the gene, CHRND, resulting in SCCMS are extremely rare. An important clue to the diagnosis of SCCMS is repetitive CMAP’s. Fluoxetine, usually at high doses, is used to treat SCCMS. The mutation, recently described in one patient, was identified by whole exome sequencing and validated, and its segregation with the disease was ascertained by Sanger sequencing. Here, we describe clinical and genetic findings of an early onset SCCMS patient carrying a very rare missense mutation c.880C > T in CHRND causing a highly conserved leucine to phenylalanine substitution in the M2 domain of CHRND. The patient had no repetitive CMAP. He had a dramatic response to fluoxetine at low–moderate doses (40 mg/day), increasing over months: Being wheelchair bound, he could walk independently after treatment. Rare cases may offer insight into the pathological gating mechanism leading to CMS. SCCMS should be suspected even without a repetitive CMAP. Fluoxetine at relatively low doses can be a very effective treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Engel AG, Shen XM, Selcen D, Sine SM (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14(5):461. https://doi.org/10.1016/S1474-4422(15)00010-1

    Article  CAS  PubMed  Google Scholar 

  2. Abicht A, Dusl M, Gallenmuller C, Guergueltcheva V, Schara U, Della Marina A, Wibbeler E, Almaras S, Mihaylova V, von der Hagen M, Huebner A, Chaouch A, Muller JS, Lochmuller H (2012) Congenital myasthenic syndromes: achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: a study of 680 patients. Hum Mutat 33(10):1474–1484. https://doi.org/10.1002/humu.22130

    Article  CAS  PubMed  Google Scholar 

  3. Beeson D (2016) Congenital myasthenic syndromes: recent advances. Curr Opin Neurol 29(5):565–571. https://doi.org/10.1097/WCO.0000000000000370

    Article  CAS  PubMed  Google Scholar 

  4. Engel AG, Ohno K, Milone M, Wang HL, Nakano S, Bouzat C, Pruitt JN, Hutchinson DO, Brengman JM, Bren N, Sieb JP, Sine SM (1996) New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum Mol Genet 5(9):1217–1227. https://doi.org/10.1093/hmg/5.9.1217

    Article  CAS  Google Scholar 

  5. Croxen R, Newland C, Beeson D, Oosterhuis H, Chauplannaz G, Vincent A, Newsom-Davis J (1997) Mutations in different functional domains of the human muscle acetylcholine receptor alpha subunit in patients with the slow-channel congenital myasthenic syndrome. Hum Mol Genet 6(5):767–774. https://doi.org/10.1093/hmg/6.5.767

    Article  CAS  Google Scholar 

  6. Milone M, Wang HL, Ohno K, Fukudome T, Pruitt JN, Bren N, Sine SM, Engel AG (1997) Slow-channel myasthenic syndrome caused by enhanced activation, desensitization, and agonist binding affinity attributable to mutation in the M2 domain of the acetylcholine receptor alpha subunit. J Neurosci 17(15):5651–5665

    Article  CAS  Google Scholar 

  7. Shen XM, Okuno T, Milone M, Otsuka K, Takahashi K, Komaki H, Giles E, Ohno K, Engel AG (2016) Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. Hum Mutat 37(10):1051–1059. https://doi.org/10.1002/humu.23043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan JZ, Man Y, Xiao F (2016) A missense mutation in epsilon-subunit of acetylcholine receptor causing autosomal dominant slow-channel congenital myasthenic syndrome in a chinese family. Chin Med J (Engl) 129(21):2596–2602. https://doi.org/10.4103/0366-6999.192780

    Article  CAS  Google Scholar 

  9. Angelini C, Lispi L, Salvoro C, Mostacciuolo ML, Vazza G (2019) Clinical and genetic characterization of an Italian family with slow-channel syndrome. Neurol Sci 40(3):503–507. https://doi.org/10.1007/s10072-018-3645-2

    Article  PubMed  Google Scholar 

  10. Gomez CM, Maselli RA, Vohra BP, Navedo M, Stiles JR, Charnet P, Schott K, Rojas L, Keesey J, Verity A, Wollmann RW, Lasalde-Dominicci J (2002) Novel delta subunit mutation in slow-channel syndrome causes severe weakness by novel mechanisms. Ann Neurol 51(1):102–112. https://doi.org/10.1002/ana.10077[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaouch A, Muller JS, Guergueltcheva V, Dusl M, Schara U, Rakocevic-Stojanovic V, Lindberg C, Scola RH, Werneck LC, Colomer J, Nascimento A, Vilchez JJ, Muelas N, Argov Z, Abicht A, Lochmuller H (2012) A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome. J Neurol 259(3):474–481. https://doi.org/10.1007/s00415-011-6204-9

    Article  PubMed  Google Scholar 

  12. Durmus H, Shen XM, Serdaroglu-Oflazer P, Kara B, Parman-Gulsen Y, Ozdemir C, Brengman J, Deymeer F, Engel AG (2018) Congenital myasthenic syndromes in Turkey: Clinical clues and prognosis with long term follow-up. Neuromuscul Disord 28(4):315–322. https://doi.org/10.1016/j.nmd.2017.11.013S0960-8966(17)31232-4 [pii]

    Article  PubMed  Google Scholar 

  13. Harper CM, Engel AG (1998) Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neurol 43(4):480–484. https://doi.org/10.1002/ana.410430411

    Article  CAS  PubMed  Google Scholar 

  14. Harper CM, Fukodome T, Engel AG (2003) Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology 60(10):1710–1713

    Article  CAS  Google Scholar 

  15. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346(4):967–989. https://doi.org/10.1016/j.jmb.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  16. Unwin N, Fujiyoshi Y (2012) Gating movement of acetylcholine receptor caught by plunge-freezing. J Mol Biol 422(5):617–634. https://doi.org/10.1016/j.jmb.2012.07.010S0022-2836(12)00577-3 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Engel AG, Sine SM (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol 5(3):308–321. https://doi.org/10.1016/j.coph.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  18. Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20(9):374

    Article  CAS  Google Scholar 

  19. Shen XM, Milone M, Wang HL, Banwell B, Selcen D, Sine SM, Engel AG (2019) Slow-channel myasthenia due to novel mutation in M2 domain of AChR delta subunit. Ann Clin Transl Neurol 6(10):2066–2078. https://doi.org/10.1002/acn3.50902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Colomer J, Muller JS, Vernet A, Nascimento A, Pons M, Gonzalez V, Abicht A, Lochmuller H (2006) Long-term improvement of slow-channel congenital myasthenic syndrome with fluoxetine. Neuromuscul Disord 16(5):329–333. https://doi.org/10.1016/j.nmd.2006.02.009S0960-8966(06)00073-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  21. Pitt M (2008) Neurophysiological strategies for the diagnosis of disorders of the neuromuscular junction in children. Dev Med Child Neurol 50(5):328–333. https://doi.org/10.1111/j.1469-8749.2008.02038.x

    Article  PubMed  Google Scholar 

  22. Mihaylova V, Muller JS, Vilchez JJ, Salih MA, Kabiraj MM, D'Amico A, Bertini E, Wolfle J, Schreiner F, Kurlemann G, Rasic VM, Siskova D, Colomer J, Herczegfalvi A, Fabriciova K, Weschke B, Scola R, Hoellen F, Schara U, Abicht A, Lochmuller H (2008) Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain 131(Pt 3):747–759. https://doi.org/10.1093/brain/awm325

    Article  PubMed  Google Scholar 

  23. Lorenzoni PJ, Scola RH, Gervini BL, Kay CS, Werneck LC (2009) Electrophysiological study in synaptic congenital myasthenic syndrome: end-plate acetylcholinesterase deficiency. Arq Neuropsiquiatr 67(2B):502–504 S0004-282X2009000300024 [pii]

    Article  Google Scholar 

  24. Brownlow S, Webster R, Croxen R, Brydson M, Neville B, Lin JP, Vincent A, Newsom-Davis J, Beeson D (2001) Acetylcholine receptor delta subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita. J Clin Invest 108(1):125–130. https://doi.org/10.1172/JCI12935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen XM, Ohno K, Fukudome T, Tsujino A, Brengman JM, De Vivo DC, Packer RJ, Engel AG (2002) Congenital myasthenic syndrome caused by low-expressor fast-channel AChR delta subunit mutation. Neurology 59(12):1881–1888

    Article  Google Scholar 

  26. Shen XM, Fukuda T, Ohno K, Sine SM, Engel AG (2008) Congenital myasthenia-related AChR delta subunit mutation interferes with intersubunit communication essential for channel gating. J Clin Invest 118(5):1867–1876. https://doi.org/10.1172/JCI34527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muller JS, Baumeister SK, Schara U, Cossins J, Krause S, von der Hagen M, Huebner A, Webster R, Beeson D, Lochmuller H, Abicht A (2006) CHRND mutation causes a congenital myasthenic syndrome by impairing co-clustering of the acetylcholine receptor with rapsyn. Brain 129(Pt 10):2784–2793. https://doi.org/10.1093/brain/awl188

    Article  PubMed  Google Scholar 

  28. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423(6943):949–955. https://doi.org/10.1038/nature01748

    Article  CAS  PubMed  Google Scholar 

  29. Webster R, Maxwell S, Spearman H, Tai K, Beckstein O, Sansom M, Beeson D (2012) A novel congenital myasthenic syndrome due to decreased acetylcholine receptor ion-channel conductance. Brain 135(Pt 4):1070–1080. https://doi.org/10.1093/brain/aws016

    Article  PubMed  Google Scholar 

  30. Beckstein O, Sansom MS (2006) A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Phys Biol 3(2):147–159. https://doi.org/10.1088/1478-3975/3/2/007S1478-3975(06)18065-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373(6509):37–43. https://doi.org/10.1038/373037a0

    Article  CAS  PubMed  Google Scholar 

  32. Labarca C, Nowak MW, Zhang H, Tang L, Deshpande P, Lester HA (1995) Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376(6540):514–516. https://doi.org/10.1038/376514a0

    Article  CAS  PubMed  Google Scholar 

  33. Gomez CM, Gammack JT (1995) A leucine-to-phenylalanine substitution in the acetylcholine receptor ion channel in a family with the slow-channel syndrome. Neurology 45(5):982–985

    Article  CAS  Google Scholar 

Download references

Funding

Supported by Scientific Research Project Coordination Unit of Istanbul University. Project Number: 33507.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hacer Durmus.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest to disclose.

Ethical statement

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmus, H., Sticht, H., Ceylaner, S. et al. Rare slow channel congenital myasthenic syndromes without repetitive compound muscle action potential and dramatic response to low dose fluoxetine. Acta Neurol Belg 121, 1755–1760 (2021). https://doi.org/10.1007/s13760-020-01505-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01505-0

Keywords

Navigation